Cho $a,b,c\in R; a+b+c=3; abc\geq -4$
CMR: $3(abc+4)\geq 5(ab+bc+ca)$
Bài này nằm trên báo THTT số 483 (Tháng 9/2017)
- thanhdatqv2003 yêu thích
Gửi bởi Hoang Tung 126 trong 22-09-2017 - 20:54
Cho $a,b,c\in R; a+b+c=3; abc\geq -4$
CMR: $3(abc+4)\geq 5(ab+bc+ca)$
Bài này nằm trên báo THTT số 483 (Tháng 9/2017)
Gửi bởi Hoang Tung 126 trong 28-05-2016 - 06:57
Bài 13. (Sưu tầm) Cho $a,b,c>0$ thỏa $a+b+c=1$. Chứng minh\[\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \geq \sqrt{\frac{4-27abc}{4(ab+bc+ac)}}\]
Bạn xem lại đề bài câu này nhé. Nghe chừng đề có vấn đề !
Gửi bởi Hoang Tung 126 trong 17-05-2016 - 14:53
Từ bất đẳng thức :
$(a+b-c)(b+c-a)(c+a-b) \leq abc $
Xem lại cái này nhé Huy , 3 số phải như thế nào ??
Gửi bởi Hoang Tung 126 trong 13-05-2016 - 16:51
Gửi bởi Hoang Tung 126 trong 13-05-2016 - 16:29
Cách làm của em, chả biết là có gọi là hình thuần túy hay không
$1/$ Ta có hệ thức $HA+HB+HC=2(R+r)$
$2/ $Áp dụng bđt $R\geq 2r$
$3/$ Ap dụng Bất đẳng thức Erdos-Modell $d_{a}+d_{b}+d_{c}\leq \frac{1}{2}(HA+HB+HC)$
Áp dụng $3$ ý trên dễ dàng ra được bât đẳng thức cần chứng minh!
Mong anh chia sẽ chứng minh của anh cho mọi người cùng học tập!
Đây là lời giải mang thuần tính đại số của anh !
Gửi bởi Hoang Tung 126 trong 09-05-2016 - 17:12
Bài toán: Cho tam giác $ABC$ với $H$ là trực tâm. Gọi $d_{a},d_{b},d_{c}$ lần lượt là khoảng cách từ $H$ tới các cạnh $BC,CA,AB$. Gọi $R,r$ lần lượt là bán kính đường tròn ngoại tiếp ,nội tiếp trong tam giác .
CMR: $d_{a}+d_{b}+d_{c}\leq \frac{3}{4}.\frac{R^{2}}{r}$
P/s: Bài toán đã từng xuất hiện trên Tạp chí THTT. Lời giải của mình thuần tính đại số và nhiều bđt phụ. Cần 1 lời giải thuần túy hình học !
Gửi bởi Hoang Tung 126 trong 04-02-2016 - 21:55
AM- GM : $5(\sum a)+\frac{3}{abc}\geq 6.\sqrt[6]{\frac{3(\sum a)^{5}}{abc}}$ (1)
$3abc(a+b+c)=abc(a+b+c)(a^{2}+b^{2}+c^{2})\leq \frac{(ab+bc+ca)^{2}}{3}(a^{2}+b^{2}+c^{2})=\frac{1}{3}(ab+bc+ca)(ab+bc+ca)(a^{2}+b^{2}+c^{2})\leq \frac{1}{3}.\frac{(\sum a^{2}+\sum ab+\sum ab)^{3}}{27}=\frac{((\sum a)^{2})^{3}}{81}=\frac{(\sum a)^{6}}{81}< = > abc\leq \frac{(a+b+c)^{5}}{243}$ (2)
(1),(2) $= > 5(\sum a)+\frac{3}{abc}\geq 6.\sqrt[6]{\frac{243(a+b+c)^{5}}{(a+b+c)^{5}}}=18$
Gửi bởi Hoang Tung 126 trong 04-02-2016 - 20:21
Bài toán : Cho các số thực dương $a,b,c>0$. Tìm hằng số $k$ lớn nhất thỏa mãn bất đẳng thức sau luôn đúng:
$(\frac{a}{a+b})^{2}+(\frac{b}{b+c})^{2}+(\frac{c}{c+a})^{2}-\frac{3}{4}\geq k(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}-\frac{3}{2})$
P/s: Sáng tạo từ bài của thầy Luật trên báo THTT.
Gửi bởi Hoang Tung 126 trong 03-02-2016 - 10:16
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ĐỀ THI THỬ ĐẠI HỌC NĂM 2015-2016
TRƯỜNG THPT CHUYÊN KHTN Môn : TOÁN (24-1-2016)- Lần 2
Thời gian làm bài: 180 phút , không kể thời gian phát đề
Câu $I$.(2 điểm) :Cho hàm số $y=(x-m)^{3}-3x^{2}+6mx-3m^{2}$
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi $m=0$
2) Chứng minh rằng $y_{max}^{2}+y_{min}^{2}=16$
Câu $II$. (2 điểm): 1) Giải phương trình: $sin2x-cos2x-cosx-3sinx+2=0$
2) Cho đa giác đều 24 đỉnh, hỏi có bao nhiêu tứ giác có 4 đỉnh là đỉnh đa giác và 4 cạnh là 4 đường chéo của đa giác.
Câu $III$. (2 điểm): 1) Viết phương trình của các đường tiệm cận và lập bảng biến thiên của hàm số:
$y=\frac{\sqrt{1+x^{2}}}{\sqrt[3]{1+x^{3}}}$
2) Gọi $z_{1},z_{2}$ là nghiệm phức của phương trình: $z^{2}-(2i+1)z+i-1=0$
Tính $\left | z_{1}^{2}-z_{2}^{2} \right |$.
Câu $IV$. (3 điểm): 1) Cho lăng trụ tam giác đều $ABC.A^{'}B^{'}C^{'}$ có $AB=2a$, góc giữa $AB^{'}$ và $BC^{'}$ bằng $60^{0}$. Tính thể tích của lăng trụ.
2) Trong không gian với hệ tọa độ $Oxyz$ ,cho hình vuông $ABCD$ có đỉnh $A(1,2,1)$ và đường chéo $BD$ có phương trình $\frac{x-3}{4}=\frac{y}{-1}=\frac{z}{1}$. Tìm tọa độ các đỉnh còn lại của hình vuông.
3) Trong hệ tọa độ $Oxy$, cho tam giác $ABC$ vuông tại $A,B(1,1)$, đường thẳng $AC$ có phương trình $4x+3y-32=0$. Trên tia $BC$ lấy điểm M sao cho $BC.BM=75$. Tìm tọa độ đỉnh $C$ biết bán kính đường tròn ngoại tiếp tam giác $AMC$ bằng $\frac{5\sqrt{5}}{2}$.
Câu $V$. (1 điểm): Với $x,y,z$ là các số thực đôi một phân biệt. Hãy tìm giá trị nhỏ nhất của biểu thức:
$M=(\frac{2x-y}{x-y})^{2}+(\frac{2y-z}{y-z})^{2}+(\frac{2z-x}{z-x})^{2}$
----- HẾT-----
Gửi bởi Hoang Tung 126 trong 28-11-2015 - 09:30
Bất đẳng thức tương đương: $\sum bc\left(1+\dfrac{a}{b+c}\right)^2+\dfrac{5}{4}(a+b+c)^2\geqslant 6(ab+bc+ca)\Leftrightarrow 2abc\sum \dfrac{1}{b+c}+abc\sum \dfrac{a}{(b+c)^2}+\dfrac{5}{4}(a+b+c)^2\geqslant 5(ab+bc+ca)$
Áp dụng bất đẳng thức Cauchy-Schwarz: $2abc\sum \dfrac{1}{b+c}\geqslant \dfrac{9abc}{a+b+c}$
và
$abc\sum \dfrac{a}{(b+c)^2}\geqslant \dfrac{9abc}{4(a+b+c)}$
Do đó ta chỉ cần chứng minh: $a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\geqslant 2(ab+bc+ca)$ hiển nhiên đúng.
Nếu bạn tự làm được bài này thì không có vấn đề gì ,nhưng nếu copy đáp án từ 1 nơi nào đó thi bạn nên ghi nguồn lại nhé!!
Gửi bởi Hoang Tung 126 trong 14-09-2015 - 15:22
Gửi bởi Hoang Tung 126 trong 13-09-2015 - 09:14
Bài 4: (Đề thử sức số 3 báo THTT số 450 T12/2014)
Cho hai số thực $a;b\in \left ( 0;1 \right )$ thỏa mãn $a^{2}+b^{2}=a\sqrt{1-b^{2}}+b\sqrt{1-a^{2}}$
Tìm giá trị nhỏ nhất của biểu thức $P= \frac{8\left ( 1-a \right )}{1+a}+9\sqrt{\frac{1-b}{1+b}}$
Sử dụng phép nhân liên hợp ta có :
$a^2+b^2=a\sqrt{1-b^2}+b\sqrt{1-a^2}< = > a(a-\sqrt{1-b^2})+b(b-\sqrt{1-a^2})=0$
$< = > a.\frac{a^2+b^2-1}{a+\sqrt{1-b^2}}+b.\frac{b^2+a^2-1}{b+\sqrt{1-a^2}}=0$
$< = > (a^2+b^2-1)(\frac{a}{a+\sqrt{1-b^2}}+\frac{b}{b+\sqrt{1-a^2}})=0$
$= > a^2+b^2-1=0= > a^2+b^2=1$
Do $a^2+b^2=1$ ,$a,b> 0$ nên tồn tại góc $\alpha$ với $0< \alpha < \frac{\pi }{2}$ thỏa mãn $sin^{2}\alpha +cos^{2}\alpha =1$
- Xét $a=sin\alpha ,b=cos\alpha$ . Ta có :
$P=\frac{8(1-a)}{1+a}+9\sqrt{\frac{1-b}{1+b}}=\frac{8(1-sin\alpha )}{1+sin\alpha }+9\sqrt{\frac{1-cos\alpha }{1+cos\alpha }}=\frac{8(sin\frac{\alpha }{2}-cos\frac{\alpha }{2})^2}{(sin\frac{\alpha }{2}+cos\frac{\alpha }{2})^2}+9\sqrt{\frac{2sin^{2}\frac{\alpha }{2}}{2cos^{2}\frac{\alpha }{2}}}=\frac{8(\frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}}-1)^2}{(\frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}}+1)^2}+\frac{9sin\frac{\alpha }{2} }{cos\frac{\alpha }{2}}=\frac{8(t-1)^2}{(t+1)^2}+9t$
(Với $t=\frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}}> 0$)
Tới đây xét đạo hàm hoặc biến đổi tương đương ta Cm được $P\geq 5$
Dấu = xảy ra khi $t=\frac{1}{3}< = > \frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}}=\frac{1}{3},sin^{2}\frac{\alpha }{2}+cos^{2}\frac{\alpha }{2}=1$
$ < = > sin\frac{\alpha }{2}=\frac{1}{\sqrt{10}},cos\frac{\alpha }{2}=\frac{3}{\sqrt{10}}$
$< = > a=\frac{3}{5},b=\frac{4}{5}$. Do đó $P_{min}=5$
- Xét $a=cos\alpha ,b=sin\alpha$. Ta có :
$P=\frac{8(1-a)}{1+a}+9\sqrt{\frac{1-b}{1+b}}=\frac{8(1-cos\alpha )}{1+cos\alpha }+9\sqrt{\frac{1-sin\alpha }{1+sin\alpha }}=\frac{8sin^{2}\frac{\alpha }{2}}{cos^{2}\frac{\alpha }{2}}+9\sqrt{\frac{(sin\frac{\alpha }{2}-cos\frac{\alpha }{2})^2}{(sin\frac{\alpha }{2}+cos\frac{\alpha }{2})^2}}=8(\frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}})^2+9.\left | \frac{sin\frac{\alpha }{2}-cos\frac{\alpha }{2}}{sin\frac{\alpha }{2}+cos\frac{\alpha }{2}} \right |$
+ Nếu $sin\frac{\alpha }{2}\geq cos\frac{\alpha }{2}= > \frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}}\geq 1= > P=8(\frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}})^2+9.(\frac{sin\frac{\alpha }{2}-cos\frac{\alpha }{2}}{sin\frac{\alpha }{2}+cos\frac{\alpha }{2}})\geq 8= > P\geq 8$ (1)
+ Nếu $sin\frac{\alpha }{2}< cos\frac{\alpha }{2}= >0< \frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}}< 1$
Khi đó $P=8(\frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}})^2+9(\frac{cos\frac{\alpha }{2}-sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}+sin\frac{\alpha }{2}})=8t^2+\frac{9(1-t)}{1+t}$
( Với $t=\frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}},o< t< 1$)
Tới đây xét đạo hàm hoặc biến đổi tương đương ta CM được $P\geq 5$ (2)
Dấu = xảy ra khi $t=\frac{1}{2}$
$< = > cos\frac{\alpha }{2}=2sin\frac{\alpha }{2},cos^{2}\frac{\alpha }{2}+sin^{2}\frac{\alpha }{2}=1$
$< = > sin\frac{\alpha }{2}=\frac{1}{\sqrt{5}},cos\frac{\alpha }{2}=\frac{2}{\sqrt{5}}$
$= > a=\frac{3}{5},b=\frac{4}{5}$
+ Từ (1)(2) $= > P_{min}=5< = > a=\frac{3}{5},b=\frac{4}{5}$
- Từ 2 TH trên $= > P_{min}=5< = > a=\frac{3}{5},b=\frac{4}{5}$
P/s: Trở lại sau 1 thời gian
Gửi bởi Hoang Tung 126 trong 29-08-2015 - 12:29
Bài toán : Cho các số thực dương $a,b,c> 0$.Tìm hằng số $k$ nhỏ nhất thỏa mãn và hãy chứng minh BĐT đúng trong trường hợp đó:
$\frac{ab}{a^2+ab+b^2}+\frac{bc}{b^2+bc+c^2}+\frac{ca}{c^2+ac+a^2}+\frac{k(a^2+b^2+c^2)}{(a+b+c)^2}\geq 1+\frac{k}{3}$
Gửi bởi Hoang Tung 126 trong 04-08-2015 - 17:29
Cho $a,b,c\geq 0,a\geq c,b\geq c$. Tìm Min :
$P=\frac{1}{a^2+c^2}+\frac{1}{b^2+c^2}+\sqrt{a+b+c}$
Ta có ,do $c\leq a= > a^2+c^2\leq a^2+ac=(a+\frac{c}{2})^2-\frac{c^2}{4}\leq (a+\frac{c}{2})^2$
$c\leq b= > b^2+c^2\leq b^2+bc=(b+\frac{c}{2})^2-\frac{c^2}{4}\leq (b+\frac{c}{2})^2$
Từ đó $= > \frac{1}{a^2+c^2}+\frac{1}{b^2+c^2}\geq \frac{1}{(a+\frac{c}{2})^2}+\frac{1}{(b+\frac{c}{2})^2}\geq \frac{8}{(a+\frac{c}{2}+b+\frac{c}{2})^2}=\frac{8}{(a+b+c)^2}$
(Do áp dụng bất đẳng thức$\frac{1}{m^2}+\frac{1}{n^2}\geq \frac{8}{(m+n)^2}$. Chứng minh bằng Cosi thì $\frac{1}{m^2}+\frac{1}{n^2}\geq \frac{2}{mn}=\frac{8}{4mn}\geq \frac{8}{(m+n)^2}$)
Từ đó $= > P\geq \frac{8}{(a+b+c)^2}+\sqrt{a+b+c}=\frac{8}{(a+b+c)^2}+\frac{\sqrt{a+b+c}}{4}+\frac{\sqrt{a+b+c}}{4}+\frac{\sqrt{a+b+c}}{4}+\frac{\sqrt{a+b+c}}{4}\geq 5\sqrt[5]{\frac{8\sqrt{(a+b+c)^4}}{4^4.(a+b+c)^2}}=5\sqrt[5]{\frac{8(a+b+c)^2}{4^4(a+b+c)^2}}=5\sqrt[5]{\frac{8}{4^4}}=\frac{5}{2}= > P\geq \frac{5}{2}= > P_{min}=\frac{5}{2}< = > a=b,c=0, a+b+c=4< = > a=b=2,c=0$
Gửi bởi Hoang Tung 126 trong 03-08-2015 - 16:14
Đề thi khối 11
Đề thi khối 10
Nguồn : Lấy từ Facebook của thầy Nguyễn Quang Tân
Câu 1 đề 11: Ta chia ra làm 2 bước
- Bước 1 : Chứng minh bằng qui nạp ta chỉ ra được $u_{n}> 1$ do đó dãy bị chặn dưới
- Bước 2 : Chứng minh bằng qui nạp ta chỉ ra được $u_{n+1}< u_{n}$
Từ đó dãy có giới hạn hữu hạn ,Đặt $\lim_{n\rightarrow +\infty }u_{n}=a> 1= > \lim_{n\rightarrow +\infty }u_{n+1}=a$. Thay vào đề bài ta tìm được $a$
Community Forum Software by IP.Board
Licensed to: Diễn đàn Toán học