Đến nội dung


hthang0030

Đăng ký: 01-10-2015
Offline Đăng nhập: 04-09-2018 - 22:47
***--

Bài viết của tôi gửi

Trong chủ đề: Tìm tất cả các hàm f: $$\mathbb{R}\rightarr...

09-06-2017 - 00:37

Bài này là BalkanMO năm 97.


Trong chủ đề: $f(x)-2f(2x)+f(4x)=x^{2}+x, \forall x\in \m...

07-06-2017 - 17:22

Đặt $g(x)=f(x)-f(2x)$

=>$g(x)-g(2x)=x^2+x$

Đặt $g(x)=h(x)-\frac{1}{3}x^2-x$

=>$h(x)=h(2x)$

Bài toán được đưa về dạng quen thuộc:

$h(x)=p(log_{2}\pm x)$ với $p(x)$ là hàm tuần hoàn chu kỳ 1 trên $\mathbb{R}$


Trong chủ đề: $u_{n+2}-2 \cos \alpha .u_{n+1}+u_n=0$

20-05-2017 - 00:35

Xin được góp ý 1 lời giải:

Phương trình đặc trưng:$x^2-2cos\alpha x+1=0$

$\Delta '=cos^2\alpha -1\leq 0$

TH1:$cos^2\alpha =1$

=>$cos\alpha =\pm 1$

=>Phương trình đặc trưng có nghiệm kép:$x_{1}=x_{2}=\pm 1$

=>$u_{n}=(A+B.n)(\pm 1)^n$

TH2:$cos\alpha <1$

=>Phương trình có nghiệm phức $x_{1,2}=cos\alpha \pm i.sin\alpha$

=>$u_{n}=A.cosn\alpha +B.sinn\alpha$


Trong chủ đề: CMR:trực tâm tam giác POQ nằm trên AC

09-05-2017 - 19:48

Lời giải: Gọi $(K)$ cắt $(O)$ tại điểm thứ hai $M$. Ta : $\angle MPA=\angle MOA=\widehat{MA}=2\angle MBA$ do đó $\angle PMB=\angle PBM$ hay $PM=PB$. Chú ý $\bigtriangleup MPB\sim\bigtriangleup MQC(g.g)$ do đó $\bigtriangleup MQC$ cân tại $Q$. Chú ý $OM=OB$ $OM=OC$ do đó $OP,OQ$ trung trực của $MB,MC$ do đó theo định về đường thẳng $Steiner$ thì trực tâm $J$ của tam giác $OPQ$ nằm trên $BC$(đpcm). 

 

P/s: Hình của mình hơi khác mong các bạn thông cảm.

bạn có thể đưa ra lời giải sử dụng phép vị tự quay giúp mình được không?


Trong chủ đề: Có hay không 16 số thỏa mãn Đk

16-04-2017 - 23:57

-Giả sử tìm được 16 số thỏa mãn đề bài.Khi đó ta có 16 số dư phân biệt khi chia cho 16:0,1,2...,15.Trong đó có 8 số chẵn và 8 số lẽ

=>a,b,c không đồng tính chẵn lẻ

Giả sử a,b chẵn và c lẻ.Có 9 số lẻ được tạo thành:$\overline{abc};\overline{aac};\overline{bac};\overline{bbc};\overline{ccc}; \overline{cbc};\overline{cac};\overline{acc};\overline{bcc}$

Gọi $\overline{x_{1}};\overline{x_{2}}...;\overline{x_{9}}$ là các số có 2 chữ số thu được từ các số trên bằng cách bỏ đi chữ số c ở hàng đơn vị 

Khi đó $\overline{x_{i}c}\not\equiv \overline{x_{j}c}(mod 16)<=>\overline{x_{i}}\not\equiv \overline{x_{j}}(mod 8)$

Nhưng trong 9 số $\overline{x_{1}};\overline{x_{2}}...;\overline{x_{9}}$  chỉ có 3 số lẻ $\overline{ac};\overline{bc};\overline{cc}$ nên 8 số bất kì trong 9 số $\overline{x_{1}};\overline{x_{2}}...;\overline{x_{9}}$ luôn có 2 số đồng dư mod 8(Mâu thuẫn)

=>Không tìm được 16 số thỏa mãn đề bài

 -Tương tự với trường hợp a,b lẻ và c chẵn