Post 399.png 52.04K 112 Số lần tải
Xin đưa ra một hướng giải khá dài cho bài toán 1,
Gọi $M$ là hình chiếu của $P$ lên $EF$, $S$, $T$ lần lượt là giao điểm của $AP$ với $BC$ và đường tròn ngoại tiếp tam giác $ABC$. $N$ là điểm chính giữa cung $BC$ chứa $A$ của đường tròn ngoại tiếp tam giác $ABC$. Theo tính chất phương tích : $SP\cdot SQ$ $=$ $SB\cdot SC$ $=$ $ST\cdot SA$ nên $\tfrac{ST}{SQ}$ $=$ $\tfrac{SP}{SA}$ $\Leftrightarrow $ $\tfrac{ST}{TQ}$ $=$ $\tfrac{SP}{PA}$. Theo hệ thức lượng trong tam giác vuông và chú ý các tam giác $NTB$ và $APE$ đồng dạng góc - góc ta suy ra $\tfrac{PM}{PA}$ $=$ $\tfrac{PE^2}{PA^2}$ $=$ $\tfrac{TB^2}{TN^2}$. Do $NT$ $\perp$ $BC$ nên các tam giác $PSD$ và $TNA$ đồng dạng góc - góc suy ra $\tfrac{PS}{PD}$ $=$ $\tfrac{TN}{TA}$. Từ đó ta thu được $\tfrac{PM}{PA}$ $\cdot$ $\tfrac{PS}{PD}$ $=$ $\tfrac{TB^2}{TN\cdot TA}$. Mặt khác do $TB^2$ $=$ $TS\cdot TA$ nên $\tfrac{PM}{PA}$ $\cdot$ $\tfrac{PS}{PD}$ $=$ $\tfrac{ST}{TN}$ $\Leftrightarrow $ $\tfrac{PM}{PD}$ $=$ $\tfrac{ST}{SP}$ $\cdot $ $\tfrac{PA}{TN}$ $=$ $\tfrac{TQ}{TN}$. Do đó $\triangle NTQ$ $\sim $ $\triangle DPM$ (cạnh - góc -cạnh) suy ra $\angle PMD$ $=$ $\angle NQT$. Gọi $Z$ là giao điểm của $EF$ với $BC$, $U$ là giao điểm của $QN$ với $BC$ thì tứ giác $ZPUQ$ nội tiếp một đường tròn. Do đó $SU\cdot SZ$ $=$ $SP\cdot SQ$ $=$ $ST\cdot SA$ suy ra tứ giác $AUTZ$ nội tiếp. Gọi $Y$ là hình chiếu của $K$ lên $EF$, do các cặp tam giác $KYE$ và $PFB$, $KYF$ và $PEC$ đồng dạng nên $\tfrac{YE}{YF}$ $=$ $\tfrac{BF}{CE}$ $=$ $\tfrac{ZB}{ZC}$ (theo định lý Menelaus trong tam giác $ABC$ với cát tuyến $\overline{ZEF}$). Gọi $V$ là điểm trên đoạn $BC$ sao cho $\tfrac{VB}{VC}$ $=$ $\tfrac{ZB}{ZC}$ $=$ $\tfrac{YE}{YF}$, ta thu được cấu hình đồng dạng : $\triangle BNC\cup V$ $\sim $ $\triangle EAF\cup Y$. $G$ là giao điểm khác $T$ của $TZ$ với đường tròn ngoại tiếp tam giác $ABC$, do $T$ là điểm chính giữa cung $BC$ chứa $G$ nên $GZ$ là phân giác ngoài $\angle BGC$, suy ra $GV$ là phân giác trong $\angle BGC$, do đó $G$, $V$, $N$ thẳng hàng. Từ đó $\angle YAM$ $=$ $\angle VNT$ $=$ $\angle SZT$ nên $A$, $Y$, $U$ thẳng hàng. Gọi $W$ là hình chiếu của $Q$ lên $BC$. Đường thẳng qua $K$ song song với $BC$ cắt $CA$, $AB$ lần lượt tại $I$, $J$. Do $\angle PIK$ $=$ $\angle PEK$ $=$ $\angle PEM$ $+$ $\angle FEK$ $=$ $\angle PAB$ $+$ $\angle FDP$ $=$ $\angle PAB$ $+$ $\angle PBA$ $=$ $\angle BPQ$ $=$ $\angle BQC$. Tương tự ta thu được cấu hình đồng dạng : $\triangle BQC\cup W$ $\sim $ $\triangle JPI\cup K$, do đó $\tfrac{WC}{WB}$ $=$ $\tfrac{KI}{KJ}$. Theo bổ đề hình thang, $A$, $K$, $W$ thẳng hàng. Do $Q(WRNT)$ $=$ $(WRUS)$ $=$ $A(KLYS)$ $=$ $-1$ và $QW$ $\parallel $ $TN$ nên $QR$ đi qua trung điểm $TN$. Từ đó $QR$ đi qua tâm đường tròn ngoại tiếp tam giác $ABC$ cố định. $\square$
- quanghung86, ecchi123, yeutoan2001 và 3 người khác yêu thích