Đến nội dung


nmlinh16

Đăng ký: 18-03-2018
Offline Đăng nhập: 08-08-2022 - 18:37
****-

Chủ đề của tôi gửi

Định lý phân loại mặt đóng

09-07-2022 - 13:26

Gửi các thành viên trên diễn đàn ghi chú của mình về định lý phân loại mặt đóng, một định lý cơ bản của tô pô. Học sinh phổ thông có thể đọc được ghi chú này.

https://drive.google...iew?usp=sharing


Đối đồng điều: Lý thuyết về các cản trở

07-10-2021 - 00:58

Đối đồng điều (cohomology) nói nôm na là công cụ để đo các cản trở (obstruction) khi ta cố gắng làm gì đó. Ta không thể làm được một điều gì đó nếu đối đồng điều tương ứng là khác 0. Lý thuyết đối đồng điều là lý thuyết nghiên cứu về các cản trở.

 

Chủ đề này sẽ bắt đầu với đối đồng điều nhóm. Hi vọng mọi người có thể đóng góp thêm các ví dụ khác.

 

 

1. Giới thiệu về $\text{H}^1$

 

Ta cho $G$ là một nhóm. Nhắc lại rằng nếu $A$ là một nhóm thì một tác động (action) của $G$ trên $A$ bởi các tự đẳng cấu nhóm là một đồng cấu $\rho: G \to \text{Aut}(A)$. Với $g \in G$ và $a \in A$, ta sẽ ký hiệu ${}^g a$ thay cho $\rho(g)(a)$ nếu không có gì nhầm lẫn. Như vậy ta có các công thức $${}^g(^h a) = {}^{gh}a,$$ $${}^1 a = a $$ $${}^g(ab) = {}^g a {}^g b$$ với mọi $g,h \in G$ và $a,b \in A$. Chẳng hạn, ta luôn có thể xét tác động liên hợp của $G$ lên chính nó (hay nói cách khác là tác động bởi các tự đẳng cấu trong), cho bởi $${}^g a := gag^{-1}$$ với mọi $g,a \in G$.

Một nhóm được trang bị một tác động của $G$ bởi các tự đẳng cấu nhóm được gọi là một $G$-nhóm. Một đồng cấu nhóm $f: A \to B$ giữa hai $G$-nhóm được gọi là $G$-đẳng biến ($G$-equivariant) nếu nó tương thích với tác động của $G$ trên $A$ và trên $B$, nghĩa là $$f({}^ga) = {}^g f(a)$$ với mọi $g \in G$ và $a \in A$.

 

Khi $A$ là một $G$-nhóm, ta có một nhóm con tự nhiên của $A$ là $$A^G:=\{a \in A: \forall g \in G,\,{}^g a = a\},$$ nó được gọi là nhóm con bất biến (invariant subgroup) của $A$ bởi $G$. Nhóm này có tính hàm tử theo nghĩa: Nếu $f: A \to B$ là một đồng cấu $G$-đẳng biến thì $f(A^G) \subseteq B^G$.

 

Bây giờ ta xét $B$ là một $G$-nhóm và $A$ là một nhóm con chuẩn tắc và $G$-ổn định của $B$ (nghĩa là ${}^g a \in A$ với mọi $a \in A$ và $g \in G$). Nói cách khác, ta có thể coi $A$ như một $G$-nhóm sao cho phép bao hàm $A \to B$ là một đồng cấu $G$-đẳng biến. Vì $A$ là $G$-ổn định, ta có thể định nghĩa tốt một tác động của $G$ trên nhóm thương $B/A$ bởi $${}^g [b] := [{}^g b]$$ với mọi $g \in G$ và $b \in B$ (ở đây $[b] \in B/A$ là ký hiệu của lớp kề trái $bA$). Đây là tác động duy nhất của $G$ trên $B/A$ sao cho phép chiếu $B \to B/A$ là một đồng cấu $G$-đẳng biến.

 

Ta tìm hiểu các nhóm con bất biến $A^G, B^G$ và $(B/A)^G$. Dễ thấy $A^G$ là một nhóm con của $B^G$. Câu hỏi đặt ra là liệu ta có một đẳng cấu $B^G / A^G \simeq (B/A)^G$ hay không? Nói rõ hơn, nếu $c \in B/A$ là một phần tử $G$-bất biến, liệu nó có đến từ một phần tử $G$-bất biến của $B$ không? Câu trả lời nói chung là không, và ta sẽ xem điều gì đã cản trở việc đó.

 

Ta bắt đầu bằng việc viết $c = [b]$ với $b \in B$ tùy ý (không nhất thiết thiết $b \in B^G$). Giả thiết $c \in (B/A)^G$ có nghĩa là $[{}^g b] = [b]$ với mọi $g \in G$, do đó ta có thể viết ${}^g b = b\alpha_g$ với $\alpha_g \in A$ (phụ thuộc vào $g \in G$). Như vậy ta có $$\alpha_g = b^{-1}({}^g b)$$ với mọi $g \in G$. Từ đó ta dễ dàng kiểm tra được rằng ánh xạ $\alpha: G \to A,\ g \mapsto \alpha_g$ thỏa mãn $$\alpha_{gh} = \alpha_g {}^g \alpha_h$$ với mọi $g, h \in G$. Một ánh xạ $\alpha$ như vậy được gọi là một 1-đối chu trình (cocycle) với hệ số trong $A$. Ta ký hiệu tập hợp các 1-đối chu trình với hệ số trong $A$ bởi $\text{Z}^1(G,A)$.

 

Giả sử $b' \in B$ là một đại diện khác của $c$, nghĩa là $b' = ba$ với $a \in A$ nào đó. Ta xây dựng 1-đối chu trình $\alpha' \in \text{Z}^1(G,A)$ tương tự như trên, nghĩa là $$\alpha'_g = (b')^{-1}({}^g b') = a^{-1} b^{-1}({}^g b)({}^g a) = a^{-1} \alpha_g {}^g a$$ với mọi $g \in G$. Như vậy, để cách xây dựng $\alpha$ không phụ thuộc vào cách chọn đại diện $b$ mà chỉ phụ thuộc vào $c$, ta cần một quan hệ tương đương trên $\text{Z}^1(G,A)$ sao cho $\alpha$ tương đương với $\alpha'$. Cụ thể, quan hệ đó như sau: Ta nói hai 1-đối chu trình $\alpha,\alpha' \in \text{Z}^1(G,A)$ là đối đồng điều (cohomologuous) với nhau nếu tồn tại $a \in A$ sao cho $$\alpha'_g = a^{-1}\alpha_g {}^g a$$ với mọi $g \in G$. Ta dễ dàng kiểm tra được rằng đây là một quan hệ tương đương trên tập $\text{Z}^1(G,A)$. Tập thương của $\text{Z}^1(G,A)$ được gọi là tập đối đồng điều thứ nhất của $G$ với hệ số trong $A$, và được ký hiệu bởi $\text{H}^1(G,A)$. Ta ký hiệu lớp đối đồng điều của một đối chu trình $\alpha \in \text{Z}^1(G,A)$ bởi $[\alpha] \in \text{H}^1(G,A)$. Như vậy, với mỗi phần tử $c \in B/A$, ta đã xây dựng một lớp đối đồng điều trong $\text{H}^1(G,A)$ được đại diện bởi 1-chu trình $$\alpha: G \to A, \qquad g \mapsto  b^{-1}({}^g b)$$ với $b \in B$ là một đại diện tùy ý của $c$. Ta ký hiệu lớp đối đồng điều này bởi $\delta c$.

 

Tập hợp $\text{H}^1(G,A)$ nói chung không có một phép toán tự nhiên. Tuy nhiên, nó là một tập hợp định điểm (pointed set). Thật vậy, ánh xạ $1: G \to A, \qquad g \mapsto 1$ là một đối chu trình, và lớp đối đồng điều $[1] \in \text{H}^1(G,A)$ của nó là tập các đối chu trình có dạng $g \mapsto a^{-1} ({}^g) a$ với $a \in A$ nào đó. Ta coi đó là điểm đặc biệt của $\text{H}^1(G,A)$, và như vậy $\text{H}^1(G,A)$ trở thành một tập hợp định điểm. Từ đây ta có câu trả lời cho câu hỏi: khi nào $c \in (B/A)^G$ đến từ một phần tử của $B^G$. 

 

Định lý 1. $c \in (B/A)^G$ là ảnh của một phần tử $b \in B^G$ khi và chỉ khi $\delta c$ là điểm đặc biệt của $\text{H}^1(G,A)$.

Chứng minh

Điều kiện cần. Giả sử $c = [b]$ với $b \in B^G$. Thế thì $\delta c \in \text{H}^1(G,A)$ được đại diện bởi đối chu trình $\alpha: G \to A$ cho bởi công thức $$\alpha_g = b^{-1}({}^g b) = b^{-1}b = 1$$ với mọi $g \in G$ (vì $b \in B^G$ nên ${}^g b = b$). Vậy $\alpha$ là đối chu trình tầm thường, nghĩa là $\delta c$ chính là điểm đặc biệt của $\text{H}^1(G,A)$.

Điều kiện đủ. Giả sử $\delta c$ là điểm đặc biệt của $\text{H}^1(G,A)$. Ta chọn một đại diện $b \in B$ tùy ý của $c$ và xét đối chu trình $\alpha: G \to A$ cho bởi công thức $\alpha_g = b^{-1}({}^g b)$. Vì $[\alpha] = \delta c$ là điểm đặc biệt nên tồn tại $a \in A$ sao cho $$b^{-1}({}^g b) = \alpha_g = a^{-1}({}^g a)$$ với mọi $g \in A$. Từ đó ta có $ba^{-1} = {}^g (ba^{-1})$ với  mọi $g \in G$, nghĩa là $ba^{-1} \in B^G$. Mặt khác ta có $c = [b] = [ba^{-1}]$, vậy $c$ đến từ một phần tử $B^G$. $\square$

 

Tập hợp định điểm $\text{H}^1(G,A)$ có tính hàm tử. Cụ thể, nếu $f: A \to B$ là một đồng cấu $G$-đẳng biến giữa hai $G$-nhóm thì nó cảm sinh một ánh xạ $$f_\ast: \text{Z}^1(G,A) \to \text{Z}^1(G,B), \qquad \alpha \mapsto f \circ \alpha.$$ Ta cũng kiểm tra một cách dễ dàng rằng $f_\ast$ bảo toàn quan hệ đối đồng điều, vì thế nó cảm sinh một ánh xạ $$f_\ast: \text{H}^1(G,A) \to \text{H}^1(G,B), \qquad [\alpha] \mapsto [f \circ \alpha].$$ Ánh xạ này gửi điểm đặc biệt của $\text{H}^1(G,A)$ vào điểm đặc biệt của $\text{H}^1(G,B)$.

 

Ta diễn tả lại Định lý 1 ở trên bằng ngôn ngữ dãy khớp. Một dãy khớp ngắn các $G$-nhóm được cho bởi $$1 \to A \xrightarrow{u} B \xrightarrow{v} C \to 1,$$ trong đó $A, B, C$ là các $G$-nhóm và $f,g$ là các đồng cấu nhóm $G$-đẳng biến. Tính khớp ở đây nghĩa là

  1. $\text{Im}(1 \to A) = \text{Ker}(u: A \to B)$, hay $u$ là một đơn cấu (vậy ta có thể coi $A$ là một nhóm con của $B$).
  2. $\text{Im}(u: A \to B) = \text{Ker}(v: B \to C)$ (vậy ta có thể coi $A$ là một nhóm con chuẩn tắc của $B$).
  3. $\text{Im}(v: B \to C) = \text{Ker}(C \to 1)$, hay $v$ là một toàn cấu (vậy ta có thể coi $C = B/A$).

Nói riêng, hạn chế $A^G \to B^G$ của $u$ vẫn là một đơn cấu. Ngoài ra, ta có dãy khớp $$1 \to A^G \to B^G \to C^G,$$ vì nếu $b \in B^G$ gửi vào $1 \in C^G$ thì $b = u(a)$ với $a \in A$ nào đó. Vì $b \in B^G$ và $u$ là $G$-đẳng biến nên $$u({}^g a) = {}^g u(a) = {}^g b = b = u(a)$$ với mọi $g \in G$. Vì $u$ là một đơn cấu nên ta có ${}^g a = a$ với mọi $g \in G$, nên $a \in A^G$.

Ta đã thấy rằng một phần tử của $C^G$ không nhất thiết đến từ $B^G$, nghĩa là dãy khớp trên nói chung không mở rộng được thành $$1 \to A^G \to B^G \to C^G \to 1.$$ Tuy nhiên, nhờ các tập hợp định điểm $\text{H}^1(G,-)$, ta có 

 

Định lý 2. Ta có dãy khớp dài các tập hợp định điểm $$1 \to A^G \xrightarrow{u} B^G \xrightarrow{v} C^G \xrightarrow{\delta} \text{H}^1(G,A) \xrightarrow{u_\ast} \text{H}^1(G,B) \xrightarrow{v_\ast} \text{H}^1(G,C).$$

(một dãy $X \to Y \to Z$ các tập hợp định điểm được gọi là khớp tại $Y$ nếu tập các phần tử của $Y$ được gửi vào phần tử đặc biệt của $Z$ chính là ảnh của $X \to Y$).

Chứng minh

Tính khớp tại $A^G$ và $B^G$ đã được chỉ ra ở trên. Tính khớp tại $C^G$ chính là nội dung của Định lý 1. Như vậy ta còn phải kiểm tra tính khớp tại $\text{H}^1(G,A)$ và tại $\text{H}^1(G,B)$.

 

Tính khớp tại $\text{H}^1(G,A)$. Cho $c \in C^G$. Viết $c = v(b)$ với $b \in B$. Thế thì $\delta = [\alpha]$, với $\alpha: G \to A$ là đối chu trình cho bởi công thức $$u(\alpha_g) = b^{-1}({}^g b)$$ với mọi $g \in G$. Tuy nhiên điều này có nghĩa là $u \circ \alpha \in \text{Z}^1(G,B)$ đối đồng điều với đối chu trình tầm thường, hay $u_\ast \delta c = u_\ast[\alpha]$ là điểm đặc biệt của $\text{H}^1(G,B)$. Ngược lại, cho $\alpha: G \to A$ là một 1-đối chu trình sao cho $u_\ast[\alpha] = [u \circ \alpha]$ là điểm đặc biệt của $\text{H}^1(G,B)$, thế thì tồn tại $b \in B$ sao cho $$u(\alpha_g) = b^{-1}({}^g b)$$ với mọi $g \in G$. Nhận xét rằng $$v(b)^{-1} ({}^g v(b)) = v(u(\alpha_g)) = 1,$$ suy ra $v(b) = {}^g v(b)$ với mọi $g \in G$, nghĩa là $v(b) \in C^G$. Ngoài ra, công thức trên cho thấy rằng $[\alpha] = \delta c$. Vậy $[\alpha]$ đến từ một phần tử của $C^G$.

Tính khớp tại $\text{H}^1(G,B)$. Cho $\alpha: G \to A$ là một đối chu trình, thế thì $v(u(\alpha_g)) = 1$ với mọi $g \in G$, nghĩa là $v \circ u \circ \alpha \in \text{Z}^1(G,C)$ là đối chu trình tầm thường, vậy $v_\ast u_\ast [\alpha]$ là điểm đặc biệt của $\text{H}^1(G,C)$. Ngược lại, giả sử $\beta: G \to B$ là một đối chu trình sao cho $[v \circ \beta]$ là điểm đặc biệt của $\text{H}^1(G,C)$. Thế thì tồn tại $c \in C$ sao cho $v(\beta_g) = c^{-1} ({}^g c)$ với mọi $g \in G$. Ta viết $c = v(b)$ với $b \in B$, thế thì với mỗi $g \in G$, ta có $v(b \beta_g ({}^g b)^{-1}) = 1$, suy ra tồn tại $\alpha_g \in A$ sao cho $b\beta_g ({}^g b)^{-1} = u(\alpha_g)$ (do tính khớp của dãy $1 \to A \to B \to C \to 1$). Ta kiểm tra rằng $$\alpha: G \to A, \qquad g \mapsto \alpha_g$$ là một đối chu trình. Thật vậy, với $g,h \in G$, vì $\beta$ là một đối chu trình nên $$u(\alpha_{gh}) = b\beta_{gh} ({}^{gh} b)^{-1} = b \beta_g {}^g \beta_h ({}^{gh} b)^{-1} = (b\beta_g ({}^g b)^{-1}) {}^g(b\beta_h ({}^h b)^{-1}) = u(\alpha_g) u({}^g \alpha_h),$$ suy ra $\alpha_{gh} = \alpha_g {}^g \alpha_h$. Vậy $\alpha \in \text{Z}^1(G,A)$. Bây giờ, nhận xét rằng $\beta_g = b^{-1} u(\alpha_g) {}^g b$ với mọi $g \in G$, do đó ta có $[\beta] = [u \circ \alpha]$ trong $\text{H}^1(G,B)$, vậy $\beta$ đến từ lớp đối đồng điều $[\alpha] \in \text{H}^1(G,B)$. $\square$

 

 

Ta kết thúc với nhận xét sau đây đối với đối đồng điều abel. Cho $A$ là một $G$-nhóm. Khi $A$ là một nhóm abel, ta gọi $A$ một $G$-môđun. Một đồng cấu giữa hai $G$-môđun đơn giản là một đồng cấu nhóm $G$-đẳng biến. Một đối chu trình $\alpha: G \to A$ là một ánh xạ thỏa mãn $$\alpha_{gh} = \alpha_g + {}^g \alpha_h$$ với mọi $g,h \in G$ (ta cũng gọi $\alpha$ là một đồng cấu chéo (crossed homomorphism).

Lúc này, $\text{Z}^1(G,A)$ có một cấu trúc nhóm abel tự nhiên cho bởi $$(\alpha + \alpha')_g := \alpha_g + \alpha'_g$$ với mọi $\alpha,\alpha' \in \text{Z}^1(G,A)$ và $g \in G$. Lớp đặc biệt (gồm các đối chu trình dạng $g \mapsto {}^g a - a$ với $a \in A$) là một nhóm con của $\text{Z}^1(G,A)$. Ta ký hiệu nhóm này bởi $\text{B}^1(G,A)$ và gọi các phần tử của nó là các 1-đối biên (coboundary). Hai đối chu trình là đối đồng điều với nhau khi và chỉ khi hiệu của chúng là một đối biên, nghĩa là ta có $\text{H}^1(G,A) = \text{Z}^1(G,A) / \text{B}^1(G,A)$.

Nếu $0 \to A \to B \to C \to 0$ là một dãy khớp các $G$-môđun. Ta có dãy khớp dài các nhóm abel $$0 \to A^G \to B^G \to C^G \xrightarrow{\delta} \text{H}^1(G,A) \to \text{H}^1(G,B) \to \text{H}^1(G,C).$$

Trong trường hợp abel, ta có thể nối dài dãy khớp trên. Cụ thể, ta có thể định nghĩa nhóm $\text{Z}^n(G,A)$ các $n$-đối chu trình và nhóm con $\text{B}^n(G,A)$ các $n$-đối biên của nó. Nhóm đối đồng điều thứ $n$ của $G$ với hệ số trong $A$ là $\text{H}^n(G,A) = \text{Z}^n(G,A) / \text{B}^n(G,A)$. Nếu $0 \to A \to B \to C \to 0$ là một dãy khớp ngắn các $G$-môđun thì tồn tại các đồng cấu nhóm tự nhiên $$\delta: \text{H}^n(G,C) \to \text{H}^{n+1}(G,A)$$ sao (được gọi là các đồng cấu nối - connecting homomorphism) cho ta có dãy khớp dài $$\cdots \to \text{H}^{n-1}(G,C) \to \text{H}^n(G,A) \to \text{H}^n(G,B) \to \text{H}^n(G,C) \to \text{H}^{n+1}(G,A) \to \cdots $$


Mọi không gian vectơ 1-chiều đều đẳng cấu, nhưng một số không gian đẳng cấu hơn những k...

06-09-2021 - 15:36

Một trong những bài học đầu tiên về đại số tuyến tính là "hai không gian vectơ $n$-chiều thì đẳng cấu". Thực ra, phát biểu đó đã ẩn đi một vấn đề không tầm thường: đẳng cấu đó không "tự nhiên" - để xây dựng nó thì ta cần chọn cơ sở cho hai không gian. (Khái niệm "tự nhiên" có thể định nghĩa chặt chẽ được bằng ngôn ngữ phạm trù, tuy nhiên trong ngữ cảnh của các không gian vectơ thì ta có thể hiểu đơn giản là "tự nhiên" = "không phụ thuộc vào cách chọn cơ sở").

 

Để cho quen thuộc, ta xét mọi thứ trên trường số thực, nhưng thật ra tất cả các suy luận dưới đây không phụ thuộc vào việc ta xét trên trường nào. Ta thường dùng chữ cái $L$ để chỉ các không gian vectơ 1-chiều, vì chúng chính là các "đường thẳng" (line).

 

Sự khác biệt căn bản giữa tập số thực $\mathbb{R}$ và một không gian vectơ 1-chiều $L$ đó là trên $L$ không có một phép nhân "tự nhiên". Lí do là vì trên $\mathbb{R}$ có một cơ sở "chính tắc" (số 1), còn trên $L$ thì không. Thật vậy, cho một đẳng cấu $\mathbb{R} \to L$ chính là cho một cơ sở (i.e. một phần tử $e \neq 0$) của $L$. Giả sử ta dùng đẳng cấu này để định nghĩa phép nhân trên $L$, nghĩa là $$(ae) \cdot (be):= ab e$$ với mọi $a,b \in \mathbb{R}$. Bây giờ ta đổi sang cơ sở khác $e'$ và viết $e' = \lambda e$, với $\lambda \in \mathbb{R}$. Thế thì theo phép nhân vừa định nghĩa ở trên, ta có $$(ae') \cdot (be') = (a\lambda e) \cdot (b\lambda e) = ab\lambda^2 e = ab\lambda e',$$ nghĩa là phép nhân này không còn là phép nhân số thực thông thường khi ta chuyển sang cơ sở mới $e'$. Hiện tượng này được diễn tả lại bằng ngôn ngữ phạm trù như sau: "Biểu đồ

Untitled.png

không giao hoán."

 

Thật ra chúng ta đã thấy hiện tượng này trong một ngữ cảnh quen thuộc hơn: vật lý. Đó chính là vấn đề đổi đơn vị. Ta xét hai đơn vị đo độ dài là ${\rm m}$ và ${\rm dm}$. Ta có $1 {\rm m} = 10 {\rm dm}$, nhưng khi đổi sang đơn vị đo diện tích thì $1 {\rm m}^2 = 100 {\rm dm}^2$. Chính xác hơn, ta không thể cứ làm phép nhân một cách đơn giản $1 {\rm m} \times 1 {\rm m} = 1 {\rm m}$, vì nếu như vậy thì khi đổi sang đơn vị ${\rm dm}$, ta sẽ có $10 {\rm dm} \times 10 {\rm dm} = 10 {\rm dm}$, không tương thích với phép nhân số thực thông thường.

 

Khi đo độ dài, thực ra chúng ta không sử dụng một con số, mà chúng ta đang sử dụng một phần tử của một không gian vectơ 1-chiều. Các đại lượng vô hướng được đo bởi các không gian vectơ 1-chiều, và việc chọn cơ sở cho các không gian này giống như việc chuẩn hoán đơn vị. Việc đổi cơ sở cũng giống như việc đổi đơn vị.

 

Phép nhân "tự nhiên" trên không gian vectơ đo độ dài được cho bởi $1 {\rm m} \times 1 {\rm m} = 1 {\rm m}^2$, và $1 {\rm m}^2$ không còn là một vô hướng để đo độ dài nữa. Điều này gợi ý rằng để xây dựng một phép nhân tự nhiên trên một không gian vectơ 1-chiều, ta cần hi sinh tính "đóng kín" của phép nhân (nghĩa là kết quả của phép nhân không còn nằm trong không gian ban đầu nữa). Đối tượng toán học cho phép làm điều này chính là tích tenxơ.

 

Cho $V$ và $W$ là hai không gian vectơ. Ta sẽ chỉ ra định nghĩa ad hoc của tích tenxơ $V \otimes W$ như sau. $V \otimes W$ là tập hợp các tổng hình thức hữu hạn dạng $$\sum_{i = 1}^n \lambda_i (v_i \otimes w_i),$$ trong đó $\lambda_1,\ldots,\lambda_n \in \mathbb{R}$, $v_1,\ldots,v_n \in V$ và $w_1,\ldots,w_n \in W$. Phép cộng và phép nhân với vô hướng trên $V \otimes W$ được thực hiện một cách hiển nhiên, và bị ràng buộc bởi điều kiện "song tuyến tính" dưới đây

$$v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2,$$

$$(v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w,$$

$$\lambda (v \otimes w) = (\lambda v) \otimes w = v \otimes (\lambda w)$$ với mọi $v,v_1,v_2 \in V$, $w, w_1, w_2 \in W$ và $\lambda \in \mathbb{R}$. Nếu bộ $(e_i)_{i \in I}$ là một cơ sở của $V$ và bộ $(f_j)_{j \in J}$ là một cơ sở của $W$ thì bộ $(e_i \otimes f_j)_{i \in I, j \in J}$ là một cơ sở của $V \otimes W$. Nói riêng, $\dim (V \otimes W) = \dim V \times \dim W$. Tích tenxơ của hai không gian vectơ 1-chiều lại là một không gian vectơ 1-chiều.

 

Tích tenxơ chính cách tự nhiên nhất để nhân hai phần tử của hai không gian vectơ bất kỳ. Nói "nhân" ở đây ý là một ánh xạ song tuyến tính: Cách tự nhiên nhất để  "nhân" một vectơ $v \in V$ và một vectơ $w \in W$ chính là lấy phần tử $v \otimes w \in V \otimes W$. Lí do là vì phép toán $\otimes$ có tính song tuyến tính theo nghĩa ở trên (song tuyến tính = tuyến tính theo từng biến khi cố định biến còn lại). Theo ngôn ngữ phạm trù, sự "tự nhiên nhất" này được phát biểu lại dưới dạng tính chất phổ dụng (universal property): Với mỗi ánh xạ song tuyến tính $\phi: V \times W \to U$ (với $U$ là một không gian vectơ thứ ba, tồn tại duy nhất ánh xạ tuyến tính $\psi: V \otimes W \to U$ sao cho $\psi(v \otimes w) = \phi(v,w)$ với mọi $v \in V$ và $w \in W$. Cho một ánh xạ song tuyến tính $V \times W \to U$ cũng chính là cho một ánh xạ tuyến tính $V \otimes W \to U$.

 

Chẳng hạn ta xét $F$ là không gian vectơ đo lực và $L$ là không gian vectơ đo độ dài. Ta sẽ định nghĩa kết quả của phép nhân một phần tử của $f \in F$ với một phần tử $\ell \in L$ bởi phần tử $ab(f \otimes \ell) \in F \otimes L$. Ta khẳng định rằng $F \otimes L$ chính là không gian vectơ 1-chiều để đo năng lượng. Thật vậy, nếu ta chọn cơ sở $f = 1 {\rm N}$ cho $F$ và $\ell = 1 {\rm m}$ cho $L$ và xét hai vectơ khác, $f' = af$, $\ell' = b \ell$ (với $a,b \in \mathbb{R}$), thế thì $f' \otimes \ell' = ab(f \otimes \ell)$ theo quy tắc song tuyến tính. Điều này phù hợp với việc "đổi đơn vị đo năng lượng khi các đơn vị đo lực và đo độ dài thay đổi". Cuối cùng, ta có thể lấy $f \otimes \ell = 1 {\rm N.m} = 1 {\rm J}$ làm cơ sở của $F \otimes L$, tức là làm đơn vị đo năng lượng.

 

Một cách tương tự, nếu $L$ là không gian vectơ 1-chiều để đo độ dài thì không gian vectơ đo diện tích sẽ là $L^{\otimes 2} = L \otimes L$, không gian vectơ đo thể tích sẽ là $L^{\otimes 3} = L \otimes L \otimes L \ldots$

 

Như vậy ta đã có thể nhân hai vectơ từ hai không gian vectơ 1-chiều khác nhau (i.e. nhân hai đơn vị khác nhau). Thế chia thì sao? Để làm phép chia, ta cần biết lấy "nghịch đảo" của một vectơ khác $0$ (tất nhiên, kết quả của phép lấy nghịch đảo nói chung không nằm trong không gian ban đầu). Để khái niệm "nghịch đảo" có nghĩa, trước hết ta cần một phần tử trung lập của tích tenxơ. Điều này khá đơn giản. Với mọi không gian vectơ $V$, ta có một đẳng cấu $$\mathbb{R} \otimes V \to V, \qquad \sum_{i=1}^n \lambda_i \otimes v_i \mapsto \sum_{i=1}^n \lambda_i v_i,$$ (ánh xạ ngược của nó là $v \mapsto 1 \otimes v$). Đẳng cấu này tự nhiên, vì việc xây dựng nó không cần chọn cơ sở. Tương tự, ta cũng có đẳng cấu tự nhiên $V \otimes \mathbb{R} \to V$. Như vậy tập số thực $\mathbb{R}$, tức là các vô hướng thuần túy (không mang bất kỳ đơn vị nào) chính là "phần tử trung lập" của tích tenxơ.

 

Cho $L$ là một không gian vectơ 1-chiều, nếu ta chỉ ra được một không gian vectơ $L^{\vee}$ sao cho ta có đẳng cấu tự nhiên $L \otimes L^{\vee} \simeq \mathbb{R}$ thì $L^{\vee}$ sẽ đóng vai trò như "nghịch đảo tenxơ" của $L$. Không gian $L^{\vee}$ cần tìm ở đây chính là không gian vectơ đối ngẫu của $L$, tức là không gian các ánh xạ tuyến tính $L \to \mathbb{R}$ (các phiếm hàm tuyến tính hay dạng tuyến tính trên $L$). Đây là một không gian vectơ 1-chiều (vì một dạng tuyến tính $\phi: L \to \mathbb{R}$ sẽ hoàn toàn xác định nếu ta biết giá trị của nó tại một vectơ khác $0$ của $\mathbb{R}$). Ánh xạ tuyến tính $$L \otimes L^{\vee} \to \mathbb{R}, \qquad \sum_{i=1}^n \ell_i \otimes \phi_i \mapsto \sum_{i=1}^n \phi_i(\ell_i)$$ là một toàn cấu, và vì thế là một đẳng cấu vì hai không gian trên đều có số chiều 1. Nó tự nhiên vì cách xây dựng nó không cần chọn cơ sở. Nếu $\ell \in L$ là một vectơ khác $0$, nó lập thành một cơ sở của $L$. Ta định nghĩa "nghịch đảo" của nó là dạng tuyến tính $\ell^{\vee}: L \to \mathbb{R}$ duy nhất sao cho $\ell^{\vee}(\ell) = 1$. Giả sử ta đổi cơ sở của $L$ từ $\ell$ sang $\ell' = a\ell$, $a \neq 0$. Thế thì "nghịch đảo" của $\ell'$ là dạng tuyến tính $L \to \mathbb{R}$ sao cho $\ell' = a\ell \mapsto 1$, nghĩa là $\ell \mapsto \frac{1}{a}$. Nói cách khác nó chính là dạng tuyến tính $\dfrac{\ell^{\vee}}{a}$.

 

GIả sử $L$ là không gian vectơ đo độ dài và $T$ là không gian vectơ đo thời gian. Ta định nghĩa kết quả của phép chia một phần tử $\ell \in L$ cho một phần tử $t \in T$, $t \neq 0$, bởi phần tử $\ell \otimes t^{\vee} \in L \otimes T^{\vee}$. Không gian $L \otimes T^{\vee}$ chính là không gian vectơ đo vận tốc. Thật vậy, nếu ta lấy $\ell = 1 {\rm m}$ cho $L$ và $t = 1 {\rm s}$ cho $T$ và xét hai vectơ khác, $\ell' = a\ell$, $t' = bt$ (với $a,b \in \mathbb{R}$ và $b \neq 0$) thì $$\ell' \otimes (t')^{\vee} = (a\ell) \otimes \dfrac{t^{\vee}}{b} = \dfrac{a}{b} (\ell \otimes t^{\vee}).$$ Điều này phù hợp với việc "đổi đơn vị đo vận tốc khi đơn vị đo độ dài và đơn vị đo thời gian thay đổi". Cuối cùng, ta có thể lấy $\ell \otimes t^{\vee} = 1 {\rm m}/{\rm s}$ làm đơn vị đo vận tốc.


Giới thiệu về bó

24-05-2021 - 20:32

Khái niệm  (sheaf) thể hiện một ý tưởng cơ bản: để hiểu một không gian hình học, ta có thể nghiên cứu các hàm trên không gian đó. Bó vốn có nguồn gốc từ Tô pô đại số và hình học vi phân (Leray đã xây dựng nó để chứng minh các định lý điểm bất động trong PDE). Sau này, người ta sử dụng bó một cách có hệ thống trong hình học đại số hiện đại.

 

1. "Hàm" và "điểm"

 

Trước khi đến với nội dung chính, ta bắt đầu một phiên bản baby của định lý biểu diễn Gelfand-Naimark.

 

Nếu $A$ là một vành (giao hoán và có đơn vị), ta ký hiệu $\text{Spm}(A)$ là phổ cực đại của $A$, tức là tập hợp tất cả các ideal cực đại của $A$. Trên tập hợp này có một tô-pô được gọi là tô-pô Zariski, trong đó các tập đóng là các tập hợp $$V(I):=\{\mathfrak{m} \in \text{Spm}(A): I \subseteq \mathfrak{m}\},$$ trong đó $I$ là một ideal nào đó của $A$. Thật vậy, $\varnothing = V((1))$, $\text{Spm}(A) = V((0))$, $V(I) \cup V(J) = V(IJ)$ và $\bigcap_i V(I_i) = V\left(\sum_i I_i\right)$. Tô-pô này sinh bởi các tập mở có dạng $$D(f):=\{\mathfrak{m} \in \text{Spm}(A): f \notin \mathfrak{m}\},$$ với $f \in A$, được gọi là các tập mở chính. Như vậy, ta có thể coi các phần tử của $A$ như các hàm trên không gian tô-pô $\text{Spm}(A)$. Các ideal cực đại của $A$ chính là các điểm. Việc tính giá trị của một hàm $f$ tại một điểm $\mathfrak{m}$ chính là việc tính $f \mod \mathfrak{m}$, đó là một phần tử của trường thặng dư $A / \mathfrak{m}$. Như vậy, hàm $f$ nhận giá trị trong một trường biến thiên theo từng điểm. 

Slogan: Trong hình học, điểm là một cái gì đó mà tại đó ta có thể tính giá trị của các hàm, các giá trị này nằm trong một trường nào đó.

 

 

Cho $X$ là một không gian tô-pô. Ký hiệu $\mathcal{C}(X)$ là vành các hàm liên tục $X \to \mathbb{R}$ (phép cộng và phép nhân được định nghĩa một cách hiển nhiên). Nhóm các phần tử khả nghịch của vành này là $$\mathcal{C}(X)^\ast = \{f \in \mathcal{C}(X): \forall x \in X, f(x) \neq 0\}.$$ Với mỗi điểm $x \in X$, tập hợp $\mathfrak{m}_x:=\{f \in \mathcal{C}(X): f(x) = 0\}$ là một ideal của $\mathcal{C}(X)$. Chính xác thì nó là hạch của toàn cấu $$\mathcal{C}(X) \to \mathbb{R}, \qquad f \mapsto f(x).$$ Nó là một ideal cực đại vì $\mathcal{C}(X)/\mathfrak{m}_x \simeq \mathbb{R}$ là một trường. Ta có một ánh xạ $$X \to \text{Spm}(\mathcal{C}(X)), \qquad x \mapsto m_x.$$

 

Mệnh đề. Nếu $X$ là Hausdorff và compact thì ánh xạ trên là một phép đồng phôi (trong đó tô-pô trên $\text{Spm}(\mathcal{C}(X))$ là tô-pô Zariski).

Chứng minh

Tính toàn ánh. Cho $\mathfrak{m}$ là một ideal cực đại của $\mathcal{C}(X)$. Ta chứng minh rằng tồn tại $x \in X$ sao cho $\mathfrak{m} \subseteq \mathfrak{m}_x$ (và vì thế $\mathfrak{m} = \mathfrak{m}_x$ vì chúng là các ideal cực đại). Thật vậy, nếu ngược lại thì với mọi $x \in X$, tồn tại $f_x \in \mathfrak{m}$ sao cho $f_x(x) \neq 0$. Lấy $U_x \subseteq X$ là một lân cận mở của $x$ sao cho $f_x$ nhận giá trị khác $0$ trên toàn $U_x$. Vì $X$ là compact nên tồn tại một tập con hữu hạn $S \subseteq X$ sao cho $X = \bigcup_{x \in S}U_x$. Đặt $f:=\sum_{x \in S} f_x^2 \in \mathfrak{m}$. Thế thì $f(y) > 0$ với mọi $y \in X$, do đó $f$ khả nghịch trong $\mathcal{C}(X)^\times$, suy ra $\mathfrak{m} = \mathcal{C}(X)$, mâu thuẫn.

Tính đơn ánh. Cho $x \neq y$ là hai điểm của $X$. Vì $X$ là Hausdorff và compact nên chuẩn tắc. Theo định lý Urysohn, tồn tại hàm liên tục $f: X \to \mathbb{R}$ sao cho $f(x) = 0$ và $f(y) \neq 0$, suy ra $\mathfrak{m}_x \neq \mathfrak{m}_y$.

Tính liên tục. Xét một tập mở chính $D(f)$ của $\text{Spm}(\mathcal{C}(X))$, với $f: X \to \mathbb{R}$ liên tục. Ảnh ngược của nó bởi ánh xạ $$X \to \text{Spm}(\mathcal{C}(X)), \qquad x \mapsto \mathfrak{m}_x$$ là $\{x \in X: f(x) \neq 0\}$, hiển nhiên đây là một tập mở. Các tập mở chính là một cơ sở cho tô-pô Zariski trên $\text{Spm}(\mathcal{C}(X))$ nên ánh xạ trên liên tục.

Tính đóng. Cho $Y$ là một tập con đóng của $X$. Ta sẽ chứng minh rằng $$\{\mathfrak{m}_x: x \in Y\} = V(I),$$ với $I = \bigcap_{x \in Y} \mathfrak{m}_x = \{f \in \mathcal{C}(X): f|_Y = 0\}$. Hiển nhiên ta có $\{\mathfrak{m}_x: x \in Y\} \subseteq V(I)$. Ngược lại, xét $\mathfrak{m} \in V(I)$. Ta có $\mathfrak{m} = \mathfrak{m}_x$ với $x \in X$ nào đó. Nếu $x \notin Y$ thì tồn tại $f: X \to \mathbb{R}$ liên tục sao cho $f(x) \neq 0$ và $f|_Y = 0$ (vì $X$ là chuẩn tắc, nói riêng là chính quy). Khi đó, $f \in I$ và $f \notin \mathfrak{m}_x$. Nhưng $\mathfrak{m}_x \in V(I)$ nên $I \subseteq \mathfrak{m}_x$. Tóm lại, $x \in Y$ và do đó ta có $\{\mathfrak{m}_x: x \in Y\} = V(I)$ là một tập đóng. $\square$


Các hàm tử $\text{Ext}$

06-05-2021 - 22:43

Các hàm tử $\text{Hom}$ phản biến và thuận biến của một phạm trù abel là các hàm tử khớp trái. Khi phạm trù đã cho có đủ xạ ảnh hoặc đủ nội xạ, ta có thể xây dựng các hàm tử $\text{Ext}^n$ với tư cách là dẫn xuất phải thứ $n$ của $\text{Hom}$, $n = 1,2,\ldots$. Năm 1934, Baer đã đưa ra mô tả cụ thể cho nhóm $\text{Ext}^1$ bởi các dãy khớp ngắn và phép toán trên đó (tổng Baer). Yoneda đã tổng quát hóa điều này cho các nhóm $\text{Ext}^n$ bởi các mở rộng độ dài $n$ ($n$-fold extensions).

 

Mục tiêu của các bài viết trong chủ đề này là trình bày lại các xây dựng trên và chỉ ra rằng cách xây dựng cụ thể ở trên của hàm tử $\text{Ext}^n$ trùng với cách xây dựng qua ngôn ngữ hàm tử dẫn xuất. Nội dung được lấy từ chương VII của [Barry Mitchell, Theory of Categories, 1965].

 

Ta cố định một phạm trù abel $\mathcal{A}$. Khi không có gì nhầm lẫn, ta dùng ký hiệu $\text{Hom}$ thay cho $\text{Hom}_{\mathcal{A}}$ và tương tự với $\text{Ext}^n$. Để tránh "abstract nonsense", ta hoàn toàn có thể làm việc trong một phạm trù cụ thể như phạm trù các mô-đun trên một vành. Khi đó, các chứng minh sẽ đơn giản hơn nhiều vì ta có khái niệm "phần tử".

 

 

1. Nhóm $\text{Ext}^1$ và tổng Baer

 

Cho $A$, $B$ là hai vật (của $\mathcal{A}$). Một mở rộng của $A$ bởi $B$ là một dãy khớp ngắn $\xi: 0 \to B \to X \to A \to 0$. Ta nói một mở rộng $\xi': 0 \to B \to X' \to A \to 0$ là tương đương với $\xi$ nếu tồn tại một cấu xạ $f: X' \to X$ sao cho biểu đồ

h1.png

giao hoán. Theo bổ đề 5, một cấu xạ $f$ như vậy tự động là một đẳng cấu. Lạm dụng ký hiệu, ta sẽ viết $\xi = \xi'$ nếu chúng tương đương. Ta ký hiệu bởi $\text{Ext}^1(A,B)$ lớp tất cả các mở rộng của $A$ bởi $B$ sai khác tương đương (dễ thấy "$=$" là một quan hệ tương đương giữa các mở rộng của $A$ bởi $B$). Có một vấn đề về mặt lý thuyết tập hợp rằng $\text{Ext}^1(A,B)$ có thể quá lớn (tức là một lớp thực sự thay vì là một tập hợp). Tuy nhiên chúng ta sẽ hoàn toàn lờ đi điều này. Dễ thấy nếu $\xi = \xi'$ và $\eta = \eta'$ thì $\xi \oplus \eta = \xi' \oplus \eta'$.

 

Mục tiêu của chúng ta là định nghĩa một phép toán có tính hàm tử trên $\text{Ext}^1(A,B)$ để nó trở thành một nhóm abel. Ta bắt đầu với tính hàm tử.

 

Bổ đề 1. Cho $f: A' \to A$ là một cấu xạ. Tồn tại duy nhất (sai khác tương đương) một cách nhúng biểu đồ

h2.png

vào một biểu đồ giao hoán với hai hàng khớp:

h3.png

Hàng trên của biểu đồ này là một mở rộng của $A'$ bởi $B$. Ta gọi nó là kéo lùi của $\xi$ bởi $f$ và ký hiệu nó bởi $\xi f$ (ta sẽ sớm thấy lợi thế của ký hiệu này so với ký hiệu $f^\ast \xi$).

Chứng minh

Trước hết, ta chứng minh tính duy nhất. Thật vậy, theo tính chất phổ dụng của tích theo thớ (fibered product) $X \times_A A'$, ta có một cấu xạ $X' \to X \times_A A'$, và ta dễ dàng kiểm tra rằng nó cho ta một tương đương giữa hai mở rộng $0 \to B \to X' \to A' \to 0$ và $0 \to B \to X \times_A A' \to A' \to 0$. Để chứng minh sự tồn tại, ta chỉ cần chỉ ra rằng dãy $0 \to B \to X \times_A A' \to A' \to 0$ khớp. Đây là một bài tập cơ bản của đại số đồng điều: trước hết, vì $X \to A$ là một toàn cấu nên $A$ chính là tổng hỗn tạp (amalgamated sum) của $X$ và $A'$ dọc theo $X \times_A A'$. Chi tiết xem ở The Stacks project 08N4. $\square$

 

Như vậy, mỗi cấu xạ $f: A' \to A$ cảm sinh một ánh xạ $f^\ast: \text{Ext}^1(A,B) \to \text{Ext}^1(A',B), \quad \xi \mapsto \xi f$.

 

Một cách đối ngẫu (chẳng hạn, ta có thể làm việc trong $\mathcal{A}^{\text{op}}$), nếu $g: B \to B'$ là một cấu xạ thì tồn tại duy nhất một cách nhúng biểu đồ

h4.png

vào một biểu đồ giao hoán với hai hàng khớp

h5.png

Trong trường hợp này, $X'$ là tổng hỗn tạp $X \sqcup_B B'$. Hàng dưới của biểu đồ trên là một mở rộng của $A$ bởi $B'$. Ta gọi nó là đẩy xuôi của $\xi$ bởi $g$ và ký hiệu nó bởi $g \xi$.

Ta có một ánh xạ $g_\ast: \text{Ext}^1(A,B) \to \text{Ext}^1(A,B'), \quad \xi \mapsto g\xi$.

 

 

Bổ đề 2. Cho $\xi: 0 \to B \to X \to A \to 0$ và $\xi': 0 \to B' \to X' \to A' \to 0$ là các dãy khớp ngắn. Cho một cấu xạ $\xi' \to \xi$ giữa chúng, và ký hiệu $f: A' \to A$ và $g: B' \to B$ là các cấu xạ tương ứng. Khi đó $\xi' \to \xi$ phân tích qua một mở rộng $\xi''$ của $A'$ bởi $B$ sao cho $\xi'' = g \xi' = \xi f$.

Chứng minh

Ta lấy $\xi'' = \xi f$ rồi xây dựng một cấu xạ $X' \to X \times_A A'$ bằng tính chất phổ dụng của tích theo thớ, từ đó ta có một cấu xạ $\xi' \to \xi''$ với hai đầu là $g: B' \to B$ và $1_{A'}: A' \to A'$. Do tính duy nhất nên ta có $\xi'' = g \xi'$. $\square$

 

 

Bổ đề 3. Cho $\xi: 0 \to B \to X \to A \to 0$ là một mở rộng. Cho $f: A' \to A, f': A'' \to A', g: B \to B'$ và $g': B' \to B''$ là các cấu xạ. Ta có các đẳng thức sau

(i) $1_B \xi = \xi 1_A = \xi$.

(ii) $(g'g)\xi = g'(g\xi)$ và $\xi(ff') = (\xi f)f'$.

(iii) $(g \xi) f = g(\xi f)$.

Nói cách khác, các xây dựng $f^\ast$ và $g_\ast$ có tính hàm tử và tương thích với nhau. Nói riêng, ta có một hàm tử hai biến $\text{Ext}^1(-,-): \mathcal{A}^{\text{op}} \times \mathcal{A} \to \mathbf{Sets}.$ Ngoài ra, ta có thể viết $gg' \xi, \xi ff'$ và $g\xi f$ mà không gây bất kỳ nhầm lẫn nào.

Chứng minh

(i) và (ii) là hiển nhiên. Để chứng minh (iii), ta xét các cấu xạ tự nhiên $\xi f \to \xi$ và $\xi \to g\xi$. Áp dụng Bổ đề 2, ta có thể phân tích hợp thành $\xi f \to g\xi$ qua một mở rộng $\xi'$ của $A'$ bởi $B'$ sao cho $\xi' = g(\xi f) = (g \xi)f$. $\square$

 

 

Khi $A$ là một vật, ta ký hiệu $\Delta: A \to A \oplus A$ là cấu xạ đường chéo, $\nabla: A \oplus A \to A$ là cấu xạ "cộng", và $\tau: A \oplus A \to A \oplus A$ là cấu xạ "đổi chỗ hai tọa độ".

Cho $A$ và $B$ là hai vật. Ta định nghĩa phép toán $+$ (được gọi là tổng Baer) trên tập hợp $\text{Ext}^1(A,B)$ bởi $$\xi+\xi':=\nabla (\xi \oplus \xi') \Delta$$ (tất nhiên, để vế phải có nghĩa thì $\nabla: B \oplus B \to B$ và $\Delta: A \to A \oplus A$). Cụ thể, nếu $\xi: 0 \to B \xrightarrow{i} X \to A \to 0$ và $\xi': 0 \to B \xrightarrow{i'} X' \to A \to 0$ thì $\xi + \xi'$ là mở rộng $$0 \to B \to \text{Coker}(B \xrightarrow{(i,-i')} X \times_A X') \to A \to 0.$$

 

Bổ đề 4. Các đẳng thức sau là đúng một khi một trong hai vế có nghĩa.

(i) $(g \oplus g')(\xi \oplus \xi') = g\xi \oplus g'\xi'$ và $(\xi \oplus \xi')(f \oplus f') = \xi f \oplus \xi' f'$.

(ii) $\xi \nabla = \nabla(\xi \oplus \xi)$ và $\Delta \xi = (\xi \oplus \xi) \Delta$.

(iii) $(g + g')\xi = g\xi + g'\xi$ và $\xi (f + f') = \xi f + \xi f'$.

(iv) $g(\xi + \xi') = g\xi + g\xi'$ và $(\xi + \xi')f = \xi f + \xi' f$.

Chứng minh

(i) suy ra là tính hàm tử của song tích $\oplus$. (ii) được suy ra từ Bổ đề 2 áp dụng cho cấu xạ cộng $\xi \oplus \xi \to \xi$ cũng như cấu xạ đường chéo $\xi \to \xi \oplus \xi$. Để chứng minh (iii), ta nhận xét rằng $g + g' = \nabla(g \oplus g') \Delta$, vì thế $$(g+g')\xi = \nabla(g \oplus g') \Delta \xi = \nabla(g \oplus g') (\xi \oplus \xi) \Delta = \nabla(g \xi \oplus g'\xi) \Delta = g\xi + g'\xi,$$ và tương tự cho đẳng thức $\xi (f + f') = \xi f + \xi f'$. Để chứng minh (iv), chú ý rằng $g \nabla = \nabla(g \oplus g)$, do đó $$g(\xi + \xi') = g\nabla(\xi \oplus \xi') \Delta = \nabla(g \oplus g)(\xi \oplus \xi') \Delta = \nabla(g \xi \oplus g\xi') \Delta = g\xi + g\xi',$$  và tương tự cho đẳng thức $(\xi + \xi')f = \xi f + \xi' f$. $\square$

 

 

Định lý 5. Cho $A$ và $B$ là các vật. Tập hợp $\text{Ext}^1(A,B)$ cùng với tổng Baer là một nhóm abel.

Chứng minh

Tính kết hợp. Cho $\xi,\xi'$ và $\xi''$ là các mở rộng của $A$ bởi $B$. Ta có $$(\xi + \xi') + \xi'' = \nabla(\xi \oplus \xi') \Delta + \xi'' = \nabla((\nabla(\xi \oplus \xi') \Delta) \oplus \xi'')\Delta = \nabla(\nabla \oplus 1_B)(\xi \oplus \xi' \oplus \xi'')(\Delta \oplus 1_A)\Delta.$$ Sử dụng các đẳng thức $\nabla(\nabla \oplus 1_B) = \nabla(1_B \oplus \nabla)$ và $(\Delta \oplus 1_A)\Delta = (1_A \oplus \Delta) \Delta$, ta thu được $$(\xi + \xi') + \xi''  = \nabla(1_B \oplus \nabla)(\xi \oplus \xi' \oplus \xi'')(1_A \oplus \Delta)\Delta = \nabla(\xi \oplus (\nabla(\xi' \oplus \xi'')\Delta))\Delta = \xi + (\xi' + \xi'').$$

Tính giao hoán. Cho $\xi$ và $\xi'$ là các mở rộng của $A$ bởi $B$. Các cấu xạ đổi chỗ hai tọa độ cảm sinh một cấu xạ hiển nhiên $\xi \oplus \xi' \to \xi' \oplus \xi$. Theo Bổ đề 2, ta có $\tau(\xi \oplus \xi') = (\xi' \oplus \xi) \tau$. Hiển nhiên, ta có $\nabla \tau  = \nabla$ và $\tau \Delta = \Delta$, do đó $$\xi + \xi' = \nabla(\xi \oplus \xi') \Delta = \nabla \tau(\xi \oplus \xi') \Delta = \nabla(\xi' \oplus \xi) \tau \Delta = \nabla(\xi' \oplus \xi) \Delta = \xi' + \xi.$$

Phần tử trung lập. Ta chỉ rằng rằng dãy khớp chẻ $\theta: 0 \to B \xrightarrow{i} B \oplus A \xrightarrow{p} A \to 0$ là phần tử trung lập của tổng Baer. Thật vậy, nếu $\xi: 0 \to B \xrightarrow{j} X \xrightarrow{q} A \to 0$ là một mở rộng của $A$ bởi $B$, ta có biểu đồ giao hoán với các dòng khớp:

h6.png

trong đó $\alpha$ là hợp thành của $q$ và phép chiếu lên tọa độ thứ hai $B \oplus X \to X$. Từ đó ta thấy rằng hàng giữa của biểu đồ trên là $(\theta \oplus \xi) \Delta$ và vì thế hàng dưới bằng $$\xi = \nabla(\theta \oplus \xi) \Delta = \theta + \xi.$$

Phần tử đối. Xét $\theta$ và $\xi$ như trên. Ta có biểu đồ giao hoán với hai hàng khớp

h7.png

Từ đó ta có $0 \xi = \theta$. Do đó $$\xi + (-1_B)\xi = (1_B + (-1_B))\xi = 0\xi = \theta,$$ nghĩa là $(-1_B)\xi$ là một phần tử đối của $\xi$. $\square$

 

Như vậy, $\text{Ext}^1(A,B)$ là một nhóm abel với mọi vật $A$ và $B$. Nếu $f: A' \to A$ và $g: B \to B'$ là các cấu xạ thì các ánh xạ cảm sinh $f^\ast: \text{Ext}^1(A,B) \to \text{Ext}^1(A',B)$ và $g_\ast: \text{Ext}^1(A,B) \to \text{Ext}^1(A,B')$ là các đồng cấu nhóm theo Bổ đề 4. Như vậy, ta đã xây dựng hàm tử hai biến $\text{Ext}^1(-,-): \mathcal{A}^{\text{op}} \times \mathcal{A} \to \mathbf{Ab}.$