Chứng mình rằng nếu f,g là các hàm số liên tục trên đoạn [a,b] và f(x) = g(x) với mọi x là số hữu tỷ trong đoạn [a.b] thì f(x) = g(x) với mọi x thuộc [a,b].
(Nếu ta thay hữu tỷ bởi vô tỷ thì bài toán còn đúng hay không?)
Chứng mình rằng nếu f,g là các hàm số liên tục trên đoạn [a,b] và f(x) = g(x) với mọi x là số hữu tỷ trong đoạn [a.b] thì f(x) = g(x) với mọi x thuộc [a,b].
(Nếu ta thay hữu tỷ bởi vô tỷ thì bài toán còn đúng hay không?)
Lấy $x \in [a,b]$, khi đó tồn tại một dãy số hữu tỷ $(x_n)_{n\in \mathbb{N}}$ với $x_n \in [a,b]$ sao cho $\lim_{n \to \infty}x_n = x$. Ta có
$$f(x) = f(\lim x_n) = \lim f(x_n) = \lim g(x_n) = g(\lim x_n) = g(x).$$
Trường hợp số vô tỷ chứng minh tương tự với lưu ý rằng mỗi số $x \in [a,b]$ đều là giới hạn một dãy toàn số vô tỷ: thật vậy lấy $\epsilon$ đủ nhỏ và vô tỷ sao cho $x + \epsilon$ nằm trong $[a,b]$, khi đó $x + \epsilon = \lim x_n$ với mỗi $x_n \in \mathbb{Q} \cap [a,b]$, khi này $x = \lim (x_n - \epsilon)$, khi $n$ ra đủ lớn thì $x_n - \epsilon \in [a,b]$.
Bài viết đã được chỉnh sửa nội dung bởi bangbang1412: 26-09-2023 - 22:48
$$[\Psi_f(\mathbb{1}_{X_{\eta}}) ] = \sum_{\varnothing \neq J} (-1)^{\left|J \right|-1} [\mathrm{M}_{X_{\sigma},c}^{\vee}(\widetilde{D}_J^{\circ} \times_k \mathbf{G}_{m,k}^{\left|J \right|-1})] \in K_0(\mathbf{SH}_{\mathfrak{M},ct}(X_{\sigma})).$$
![]() |
Toán Đại cương →
Giải tích →
Tài liệu và chuyên đề Giải tích →
$\int_{0}^{1}(f'(x))^{2}=\int_{0}^{1}(x+1)e^{x}f(x)dx=\frac{e^{2}-1}{4}$Bắt đầu bởi Explorer, 01-12-2023 ![]() |
|
![]() |
|
![]() |
Toán Đại cương →
Giải tích →
CMR hàm số f(x) đơn điệu thì có hữu hạn điểm gián đoạn.Bắt đầu bởi Explorer, 29-11-2023 ![]() |
|
![]() |
|
![]() |
Toán Trung học Phổ thông và Thi Đại học →
Giải tích →
Tích phân - Nguyên hàm →
$$f(x) = \sqrt{1 - x^{2}} + x^{2}f(x^{2})$$. Tính $\int_{-1}^{1}f(x)dx$Bắt đầu bởi Saturina, 24-11-2023 ![]() |
|
![]() |
|
![]() |
Toán Đại cương →
Giải tích →
Giải tích - limBắt đầu bởi Baro, 02-11-2023 ![]() |
|
![]() |
|
![]() |
Toán Trung học Phổ thông và Thi Đại học →
Giải tích →
Hàm số - Đạo hàm →
Cho $f(x)=x+e^{x}$ và $g(x)=\frac{x+1}{2x-1}$. Tìm $f^{-1}(g^{-1}(g^{-1}(f(0))))$Bắt đầu bởi Explorer, 31-10-2023 ![]() |
|
![]() |
0 thành viên, 1 khách, 0 thành viên ẩn danh