Cho $\Delta ABC$ không cân , nội tiếp (O) , B,C cố định , A thay đổi trên (O).Trên các tia AB,AC lần lượt lấy các điểm M,N để $MA=MC, NA=NB$ . $(AMN)$ cắt $(ABC)$ cắt nhau tại A và P . MN cắt BC tại Q.Gọi I là tâm của $(OBC)$ , I' đối xứng I qua MN.Chứng minh $AI'\perp BC$ .
P/s: Nguyên mẫu bài này là VMO 2014 =)))
Bằng biến đổi góc thì ta có được M,N đều thuộc (BOC)
Có góc I'NM = MNI = 90 - ABN = 90 - BAN = 90 - MAN nên tâm của (AMN) nằm trên I'N. Mà tâm của (AMN) thuộc trung trực MN nên I' chính là tâm (AMN)
Do đó ta có góc BAI' = MAI' = 90 - ANM = 90 - ABC nên AI' vuông góc BC