Bài 3
$VT<=>\frac{1}{a+1}\frac{1}{b+1}+\frac{1}{c+1}+\frac{2}{(a+1)^2}+\frac{2}{(b+1)^2}+\frac{2}{(c+1)^2}$
Ta có bất đẳng phụ sau $\frac{1}{(1+x)^2}+\frac{1}{(y+1)^2}\ge \frac{1}{1+xy}$ (Bạn tự chứng minh nhé)
Khi đó VT$\ge \frac{1}{a+1}\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}$
$=\frac{1}{a+1}\frac{1}{b+1}+\frac{1}{c+1}+\frac{abc}{abc+ab}+\frac{abc}{abc+bc}+\frac{abc}{abc+ca}$ (Do abc=1)
$=\frac{1}{a+1}\frac{1}{b+1}+\frac{1}{c+1}+\frac{c}{c+1}\frac{a}{a+1}+\frac{b}{b+1}$
$=3$
Dâu = xảy ra <=>a=b=c=1
- ThienDuc1101, Duc3290 và Moon Loves Math thích