Đến nội dung

Kamii0909 nội dung

Có 155 mục bởi Kamii0909 (Tìm giới hạn từ 29-04-2020)



Sắp theo                Sắp xếp  

#661744 Kỳ thi chọn đội tuyển dự thi VMO tỉnh Đồng Nai

Đã gửi bởi Kamii0909 on 13-11-2016 - 11:11 trong Thi HSG cấp Tỉnh, Thành phố. Olympic 30-4. Đề thi và kiểm tra đội tuyển các cấp.

Chứng minh đẳng giác có thể dùng TAB và TCA đồng dạng. D, E là trung điểm của AB, AC nên TAD và TCE đồng dạng.

Cũng giống cách của mình. Nhưng mình đang tìm cách chứng minh nhanh hơn. 




#658283 Hỏi có thể khẳng định mỗi số trong 2013 số đã cho lớn hơn 3000 hay không?

Đã gửi bởi Kamii0909 on 18-10-2016 - 13:41 trong Số học

Cho 2013 số tự nhiên đôi một khác nhau và khác 0. Biết rằng tổng của 1007 số bất kì luôn lớn hơn tổng của 1006 số còn lại cộng với 2012. Hỏi có thể khẳng định mỗi số trong 2013 số đã cho lớn hơn 3000 hay không?

Bài này nên đưa vào topic Tổ hợp chứ nhỉ :3 
Giải 
Giả sử $a_{1}< a_{2}< ...< a_{2013}$ hay $a_{1}\leq a_{2}-1\leq a_{3}-2\leq ....\leq a_{2013}-2012$

Theo giả thiết ta có 

$\sum_{2}^{1007}a_{i}+a_{1}> \sum_{1008}^{2013}a_{i}+2012\geq \sum_{2}^{1007}a_{i} +1007.1006+2012> \sum_{2}^{1007}+3000$

$\Rightarrow a_{1}> 3000$ từ đó ta có tất cả các số đều lớn hơn 3000




#689905 giải đáp phương trình hàm

Đã gửi bởi Kamii0909 on 08-08-2017 - 14:42 trong Phương trình hàm

Sai nhé. 
Không hiểu bạn tìm kiểu gì từ $g(x+1)=(2-a)g(x)+a$ mà ra được $g(x) =$ cái hàm kì dị ấy.
Mà tuyệt đối thử lại cũng không TM luôn.
Hơn nữa $g(0)=0,g(1)=1$ và $g(x+1)=g(x)+1$ chỉ kết luận được $g(x)=x, \forall x \in \mathbb{Z}$

Lời giải bài này như sau: 
$P(x,y) : f(x+y)+f(x)f(y)=f(xy)+f(x)+f(y)$
$P(x,0) : f(x)+f(x)f(0)=f(0)+f(x)+f(0) \Leftrightarrow f(x)f(0) = 2f(0)$
Nếu $f(0) \neq 0$ thì $\boxed{f(x)=2,\forall{x \in \mathbb{R}}}$
Xét $f(0)=0$
$P(x,1) : f(x+1)+f(x)f(1)=f(x)+f(x)+f(1) \Leftrightarrow f(x+1)=f(x) \left[ 2-f(1) \right] +f(1)$
$P(x+1,1) : f(x+2)=f(x) \left[ 2-f(1) \right]^2 +3f(1)-f(1)^2$

$P(1,1) : f(2)=3f(1)-f(1)^2$
$P(x,2) : f(x+2)+f(x)f(2)=f(2x)+f(x)+f(2) \Leftrightarrow f(x) \left[ 2-f(1) \right]^2 +3f(1)-f(1)^2+f(x)f(2)=f(2x)+f(x)+f(2) \Leftrightarrow f(2x)= \left[ 3-f(1) \right]f(x)=af(x)$
$P(2x,2) : f(4x)=a^2f(x)$

$P(2x,2y) -a P(x,y) : (a^2-a)f(x)f(y)=(a^2-a)f(xy)$

Nếu $a=1 \Leftrightarrow P(x,1) : f(x+1)=0 \Leftrightarrow \boxed{f(x)=0,\forall{x \in \mathbb{R}}}$

Nếu $a=0 \Leftrightarrow P(x,2) : f(2x)=0 \Leftrightarrow \boxed{f(x)=0, \forall{x \in \mathbb{R}}}$

Nếu $a^2-a \neq 0$ thì ta có hệ 

$\left\{\begin{matrix} f(x)f(y)=f(xy)\\ f(x)+f(y)=f(x+y) \end{matrix}\right.$
Hệ PTH này quen thuộc và có nghiệm là $ \boxed{ f(x)=0,\forall{x \in \mathbb{R}}}$ hoặc $ \boxed{ f(x)=x,\forall{x \in \mathbb{R}}}$




#661639 Giải pt nghiệm nguyên $k^{2}-2016=3^{n}$

Đã gửi bởi Kamii0909 on 12-11-2016 - 14:22 trong Đại số

n le

n lẻ thì sao đặt như v đc

Đã chứng minh n chẵn mà bạn



#658219 Giải phương trình nghiệm nguyên: $x+y-2=xyz-3xy$

Đã gửi bởi Kamii0909 on 17-10-2016 - 21:10 trong Số học

Giải phương trình nghiệm nguyên:

$x+y-2=xyz-3xy$

$x+y-2=xy(z-3)$
Ta bỏ qua TH đơn giản $x+y-2=0$ Giả sử x không lớn hơn y
TH1:$x+y-2> 0\Rightarrow \left\{\begin{matrix} x+y-2 \vdots xy\\ x+y-2 \vdots -xy \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+y-2\geq xy\\ x+y-2\geq -xy \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)(y-1)\geq -1\\ (x+1)(y+1)\geq 3 \end{matrix}\right.$

$x+y-2> 0\Rightarrow y>1\Rightarrow -1<x<1$ mà x khác 0 nên loại 
TH2:$2-x-y> 0\Leftrightarrow \left\{\begin{matrix} (x-1)(y-1)\geq -1\\ (x+1)(y+1) \leq 3\end{matrix}\right.$

Các TH $\left\{\begin{matrix} (x-1)(y-1)=-1\\ (x-1)(y-1) =0\end{matrix}\right.$ đơn giản nên ta bỏ qua 
Nếu $(x-1)(y-1)\geq 1\Rightarrow y-1< 0 \Rightarrow x,y<0\left ( y\neq 0 \right )$

Đặt $\left ( x,y \right )=\left ( -a,-b \right )$ thì 

$a+b+2=ab(3-z)\Rightarrow a+b+2\vdots ab\Rightarrow a+b+2\geq ab\Leftrightarrow (a-1)(b-1)\leq 3$

Tới đây thì dễ rồi 




#658282 Giải phương trình nghiệm nguyên: $x+y-2=xyz-3xy$

Đã gửi bởi Kamii0909 on 18-10-2016 - 13:21 trong Số học

Mấy dòng đầu có vội vàng quá không nhỉ?

Nếu $x+y-2=0\Leftrightarrow \left\{\begin{matrix} x=0\\ y=0\\ z=3 \end{matrix}\right.$

Xét từng TH ra ngay tập nghiệm  :icon6:  :icon6:




#658381 Giải phương trình nghiệm nguyên: $x+y-2=xyz-3xy$

Đã gửi bởi Kamii0909 on 18-10-2016 - 22:36 trong Số học

chỗ xét x+y-2>0 ấy bạn :)

Ta có $\left ( y-1 \right )>0 \Rightarrow$
TH $\left ( x-1 \right )(y-1)\leq 0$ xử lí như mình ghi ở trên.
Nếu $\left ( x-1 \right )(y-1)>0 \Rightarrow x \geq 2$
Nếu x=2 thì phương trình vô nghiệm nguyên
Nếu $x>2$
Có $xy|x+y-2\Rightarrow y|x+y-2\Rightarrow y|x-2$

Mà 0<x-2<y nên loại :lol: :lol:

Mình chưa chú ý. Cảm ơn bạn đã nhắc. Cách này cũng có thể dùng để loại nghiệm TH2 nhỉ :icon6:




#674165 CMR:a, $\sum \frac{1}{a^{2}-a+1}...

Đã gửi bởi Kamii0909 on 13-03-2017 - 19:36 trong Bất đẳng thức và cực trị

vì sao ạ?

Ý bạn là sao? Cứ khai triển ra là thấy nó tương đương thôi mà?



#673908 CMR:a, $\sum \frac{1}{a^{2}-a+1}...

Đã gửi bởi Kamii0909 on 10-03-2017 - 21:47 trong Bất đẳng thức và cực trị

1. abc=1, a,b,c dương
CMR:a, $\sum \frac{1}{a^{2}-a+1} \leq 3$
b, $\sum \frac{12a+7}{2a^{2}+1}\leq 19$

Bài 1 khó cả 2 câu.
a. Bđt cần cm tương đương với
$$\sum \frac{(2a-1)^2}{a^2-a+1} \geq 3$$
Áp dụng bđt C-S ta phải cmr
$$\frac{(2a+2b+2c-3)^2}{a^2+b^2+c^2-a-b-c+3} \geq 3$$
Đặt $p=a+b+c=x^2,q=ab+bc+ca$
Ta phải chỉ ra $p^2-9p+6q \geq 0$
Chú ý bđt thông dụng $q^2 \geq 3pr=3p=3x^2$
Bài toán đưa về $x(x- \sqrt{3})^2(x+2 \sqrt{3}) \geq 0$
Hiển nhiên đúng.
Spoiler


b. Viết lại bđt
$$ \sum \frac{(3a-1)^2}{2a^2+1} \geq 4$$
Áp dụng C-S và ta đi cmr
$$\frac{9(a+b+c-1)^2}{2(a^2+b^2+c^2)+3} \geq 4$$
$$\Leftrightarrow a^2+b^2+c^2+18(ab+bc+ca) -18(a+b+c)-3 \geq 0$$
$$\Leftrightarrow a^2+b^2+18(c-1)(a+b) +c^2-18c+18ab-3 \geq 0$$
KMTTQ, $c \geq 1$, Đặt $c=x^2$
Khi đó $$ L.H.S \geq 20ab+36(c-1) \sqrt{ab} +c^2-18c-3 \geq 0$$
$$\Leftrightarrow \frac{20}{x^2} +\frac{36(x^2-1)}{x} +x^4-18x^2-3 \geq 0$$
$$\Leftrightarrow (x-1)^2(x-2)^2(x+1)(x+5) \geq 0$$
Hiển nhiên đúng.
Spoiler



#658549 CMR: Năm điểm E; F; Q; D; P nằm trên 1 đường tròn.

Đã gửi bởi Kamii0909 on 20-10-2016 - 18:17 trong Hình học

Dễ có $\widehat{FPE}=\widehat{FQE}=60^{o}$ nên P,Q,F,E đồng viên 
$\widehat{MNP}+\widehat{NPQ}=180^{o}\Rightarrow \widehat{NPQ}=75^{o}\Rightarrow \widehat{QPF}=15^{o}\Rightarrow \widehat{QPF}+ \widehat{FQP}=90^{o}\Rightarrow \widehat{QFP}=90^{o}$




#660734 CMR: $S_{n+3}=S_{n+2}+S_{n+1}+S_{n...

Đã gửi bởi Kamii0909 on 05-11-2016 - 22:56 trong Đại số

Đa thức này có nghiệm duy nhất mà



#673316 CMR: $\sum \frac{a}{\sqrt{b+c}...

Đã gửi bởi Kamii0909 on 03-03-2017 - 01:58 trong Bất đẳng thức - Cực trị

Có $$\sum \frac{a}{\sqrt{\frac{3}{2}(b+c)(a+b+c)}} \geq \sum \frac{4a}{2a+5b+5c} \geq \frac{4(a+b+c)^2}{2(a+b+c)^2+6(ab+bc+ca)} \geq 1$$




#674386 CMR: $\sqrt{a + b} + \sqrt{b + c} + \...

Đã gửi bởi Kamii0909 on 15-03-2017 - 22:44 trong Bất đẳng thức và cực trị

Cho a, b, c là các số dương thay đổi và a + b + c = 4. CMR : $\sqrt{a + b} + \sqrt{b + c} + \sqrt{c + a} > 4$

*P/s: Xin lỗi các bạn, mình đã sửa đề :)

KMTTQ, $a \geq b \geq c$

Đpcm $$\Leftrightarrow \sum \sqrt{a+b} \geq 2 \sqrt{a+b+c}$$

$$\Leftrightarrow \sqrt{b+c} \geq \frac{c}{\sqrt{a+b+c}+\sqrt{a+b}} +\frac{b}{\sqrt{a+b+c}+\sqrt{a+c}}$$

Có $$\sqrt{a+b+c}+\sqrt{a+b} \geq \sqrt{a+b+c}+\sqrt{a+c} \geq \sqrt{b+c}$$

Vậy $$R.H.S \leq \frac{b+c}{\sqrt{b+c}}=L.H.S$$

Ta có điều phải chứng minh.

Spoiler




#669770 CMR: $\sqrt{(a+b-c)(b+c-a)(c+a-b)}\leq \frac...

Đã gửi bởi Kamii0909 on 24-01-2017 - 21:39 trong Bất đẳng thức - Cực trị

Chuẩn hóa $a+b+c=1$.
Ta phải chứng minh
$$27a^2b^2c^2+8abc+1 \geq 4(ab+bc+ca)$$
Đặt $f(a,b,c)=27a^2b^2c^2+8abc+1-4(ab+bc+ca)$
Không mất tính tổng quát,$a= \min{a,b,c}$ và đặt $t=\frac{b+c}{2}$
Ta sẽ cmr $f(a,b,c)-f(a,t,t) \geq 0$
$\Leftrightarrow (t^2-bc)\left[ 27a^2(t^2+bc) +8a-4 \right] \leq 0$
Có $bc\leq t^2$ và $a+2t=1$ Thay vào ta đi cmr $\frac{27}{2}a^2(1-a)^2 +8a-4 \leq 0$
Dễ dàng chứng minh điều này với $a \leq \frac{1}{3}$
Kiểm tra $f(a,t,t) \geq 0$ khá đơn giản.



#659194 cho đa thức f(x) tìm dư của phép chia f(x) cho (x-1)(x-2)

Đã gửi bởi Kamii0909 on 24-10-2016 - 18:21 trong Bất đẳng thức và cực trị

Đặt $x+y=a$ (cho đẹp) và $xy=b$
P=$(x+y)^3-3xy(x+y)+2xy$
$P=a^3-3ab+2b=a^3+b(2-3a)$
Ta có $4xy=4b=(x+y)^2+(x-y)^2=a^2+(x-y)^2$
Đến đây chắc em làm được. Chỉ việc xét min max của $(x-y)^2$ mà x,y nguyên nên công việc này rất dễ.



#662729 Cho tam giác ABC với I là tâm đường tròn nội tiếp

Đã gửi bởi Kamii0909 on 22-11-2016 - 20:16 trong Hình học

Bài này là mở rộng của IMO 2010.
Gọi $SD$ giao $BC$ tại $K$.
Dễ có $DB^2=DC^2=DI^2=DK.DS$ nên $\Delta{DIK}$~$\Delta{DSI}$
Từ đó có $\widehat{DIK}=\widehat{DSI}=\widehat{DAF}$ hay $AF//IK$.
Gọi $AD$ cắt $BC$ tại $H$.
Áp dụng định lý Menelaus vào tam giác $IFH$ và định lý Thales ta phải chứng minh
$\frac{AI}{IH} =\frac{DI}{DH}=\frac{DC}{DH}$
Áp dụng định lý sin vào tam giác $AIC$, $IHC$ và $DHC$ ta có
$\frac{AI}{IH}=\frac{AI}{IC}.\frac{IC}{IH}= \frac{\sin IHC}{\sin IAC}=\frac{\sin DHC}{\sin DCH}=\frac{DC}{DH}$



#662752 Cho tam giác ABC với I là tâm đường tròn nội tiếp

Đã gửi bởi Kamii0909 on 22-11-2016 - 21:15 trong Hình học

Tam giác DCA và DHC đồng dạng nên $\frac{DC}{DH}=\frac{CA}{HC}$. Tam giác ACH có CI là phân giác trong góc C nên $\frac{CA}{HC}=\frac{AI}{IH}$. Vậy $\frac{DC}{DH}=\frac{CA}{HC}=\frac{AI}{IH}$

Tks bác. Lần đầu e thấy cách thế này. Tại có 1 đẳng thức gần giống thế làm bằng định lý sin nên e bắt chước.



#662754 Cho tam giác ABC với I là tâm đường tròn nội tiếp

Đã gửi bởi Kamii0909 on 22-11-2016 - 21:16 trong Hình học

Nguyên gốc như sau.
$\frac{AI}{AD}=\frac{IH}{ID}$



#662736 Cho tam giác ABC với I là tâm đường tròn nội tiếp

Đã gửi bởi Kamii0909 on 22-11-2016 - 20:42 trong Hình học

Bác Kamii0909 đã đến chỗ $\frac{AI}{IH}=\frac{DC}{DH}$ thì chỉ cần tam giác DCH và DAC đồng dạng nữa là OK, không cần định lý sin.

Em đã thử và nó ko ra bác ạ.



#658547 Cho tam giác ABC vuông tại A.Trung tuyến AM,BN vuông góc với nhau.Tính tỉ số...

Đã gửi bởi Kamii0909 on 20-10-2016 - 18:06 trong Hình học

goi giao diem la G

GD=x thì AG=2x suy ra BM=NB=NC=3x nên BC=6x

suy ra BG2=8x

AB2=AG2+GNsuy ra AB2=12x2

AN2=5x

từ đó tìm tỷ số lượng giác của B theo x

D ở đâu vậy bạn 




#663698 Cho tam giác ABC vẽ về phía ngoài các hình vuông...

Đã gửi bởi Kamii0909 on 03-12-2016 - 14:30 trong Hình học

Xét $Q(B,\frac{-\pi}{2})$ và $Q(C,\frac{-\pi}{2})$ có tích 2 phép quay này là 1 phép đối xứng tâm $Đ_{M}$ do $M$ là trung điểm $DF$.
Theo tính chất tích các phép quay,$M$ là giao của $x,y$ với
$x$ là ảnh của $BC$ qua $Q(B,\frac{-\pi}{4})$
$y$ là ảnh của $CB$ qua $Q(C,\frac{\pi}{4})$
Từ đó $(BM,BC)=(CB,CM)=\frac{\pi}{4}$( mod $\pi$)
Chứng tỏ $\Delta MBC$ vuông cân



#658519 Cho các số thực x, y, z khác 1 và xyz=1. Chứng minh rằng $\sum...

Đã gửi bởi Kamii0909 on 20-10-2016 - 12:15 trong Bất đẳng thức và cực trị

Bạn tham khảo thêm cách khác 
Đặt $a= \frac{x}{x-1}\Leftrightarrow x= \frac{a}{a-1}$

$xyz=1 \Leftrightarrow abc= (a-1)(b-1)(c-1)\Leftrightarrow ab+bc+ac-a-b-c+1=0$

Ta có $(a+b+c-1)^{2}\geq 0\Leftrightarrow a^{2}+b^{2}+c^{2}\geq 1$




#662264 Cho các số thực $a,b,c$ thỏa mãn $a^{2}+b^{2...

Đã gửi bởi Kamii0909 on 17-11-2016 - 22:10 trong Bất đẳng thức và cực trị

v~ cả nhái :D , trích (Poland 1991) đã được giải ở đây bn: http://diendantoanho...e-6#entry660132

Cách giải của bạn hanguyen445 trong phần a không âm chính là cách giải của bài thi trên. 

Bài này khá nổi tiếng, có xuất hiện trong TLCT 10 mà bạn.




#662090 Cho các số thực $a,b,c$ thỏa mãn $a^{2}+b^{2...

Đã gửi bởi Kamii0909 on 15-11-2016 - 22:35 trong Bất đẳng thức và cực trị

Bài này có lẽ "nhái" theo 1 bài thi Châu Âu nhưng bất thành. Thành ra là 1 bài rất khó. Mình nghĩ nó là bài sau:
Cho $x,y,z$ thực thỏa mãn $x^2+y^2+z^2=2$
Chứng minh rằng $x+y+z-xyz \leq 2$.



#662053 cho a,b,c>0.CMR: $\sum \sqrt{\frac{a}...

Đã gửi bởi Kamii0909 on 15-11-2016 - 19:26 trong Bất đẳng thức và cực trị

1 cách nữa cho bài 2.
Không mất tính tổng quát giả sử $a \geq b \geq c$.
Khi đó $VP \geq \sum \frac{b^2}{b+c}$ và$ VP \geq \sum \frac{c^2}{c+a}$
Từ đó ta đi chứng minh
$\sum \frac{b^2+c^2}{b+c} \geq \sqrt \frac{2011}{2}$
Áp dụng bất đẳng thức Cauchy-Schwarz ta có $2VP \geq \frac{(\sum \sqrt {a^2+b^2})^2 }{2\sum a}$
Dễ dàng suy ra đpcm từ đây