Đến nội dung

pth_tdn nội dung

Có 91 mục bởi pth_tdn (Tìm giới hạn từ 24-05-2020)



Sắp theo                Sắp xếp  

#235119 ĐỀ THI THỬ TỔNG HỢP NĂM NAY(SO HOT)

Đã gửi bởi pth_tdn on 21-04-2010 - 11:06 trong Tài liệu - Đề thi

1/ Em có cách này :)
$(1) <=> 1=2y^2-x^2y^2; (2) <=>(xy+2y^2-x^2y^2)(2y-x)-2x^3y^2=0$
$<=>y[(x+2y-x^2y)(2y-x)-2x^3y]=0$
$<=>y[(x+2y)(2y-x)-x^2y(2y-x)-2x^3y]=0$
$<=>y[(x+2y)(2y-x)-x^2y(2y+x)]=0$
$<=>y(2y+x)(2y-x-x^2y)=0$
Từ pt(1) có y>0.
Nếu x=-2y thì thế vào pt(1) được $4y^4-2y^2+1=0$ vô nghiệm.
Vậy $2y-x=x^2y$
$<=>x^2y(xy+1-2xy)=0 <=> (1-xy)x^2y=0$
*x=0 <=> y=0 (loại)
*$xy=1 <=> x= 1 <=> y=1$(theo pt(2) )
Vậy hpt có nghiệm duy nhất (x,y)=(1,1)



#235122 rời rạc

Đã gửi bởi pth_tdn on 21-04-2010 - 11:30 trong Các dạng toán khác

Lúc đầu có 2005 tấm xanh,0 tấm đỏ. Hiệu chia 4 dư 1.
Sau khi lật 4 tấm bất kì, giả sử trong đó có n tấm xanh và m tấm đỏ (n+m=4). thì số tấm đỏ sau đó tăng thêm n giảm m; số tấm xanh giảm n tăng thêm m. Hiệu của chúng so với trước đó là $x+n-m-(y-n+m)=x-y+2(n-m)$.
Ta có $n-m=n+m-2m=4-2m$ chẵn. => Hiệu số tấm xanh và số tấm đỏ sau và trước khi chuyển đổi có cùng dư khi chia cho 4 (chia 4 dư 1).
Nếu 2005 tấm đỏ, 0 tấm xanh thì hiệu là -2005 chia 4 dư 3 => Không thể thực hiện được.



#235165 Đề thi HSG lớp 9 tỉnh Vĩnh Phúc

Đã gửi bởi pth_tdn on 21-04-2010 - 16:38 trong Tài liệu - Đề thi

Em nghĩ bảng 9*9 là đủ rồi phải ko anh?
Vì bất cứ ô nào không nằm trên rìa bên ngoài của bảng sẽ có cạnh chung hoặc đỉnh chung với 8 ô khác.
Trong các số nguyên từ 1 đến 10, chỉ có 3 số 1;5;7 nguyên tố cùng nhau với ít nhất 8 số khác.
Xét bảng 9*9, số ô không nằm trên rìa bên ngoài là 7.7=49 ô.
Có 49 ô, điền bởi 3 số. Do đó, theo nlí Dirichlet, có 1 số được viết trên ít nhất 17 ô.



#235186 Hình!?

Đã gửi bởi pth_tdn on 21-04-2010 - 18:54 trong Các dạng toán khác

Có hay không cách chia một tam giác thành 5 tam giác bằng nhau?
Trả lời câu hỏi với 7 phần bằng nhau.



#235249 PTNN

Đã gửi bởi pth_tdn on 22-04-2010 - 06:36 trong Số học

Tìm x,y,z nguyên: $(x-y)(y-z)(z-x)=x+y+z$.



#235264 Một bài vào tổng hợp

Đã gửi bởi pth_tdn on 22-04-2010 - 11:18 trong Các dạng toán khác

Không nhất thiết. Ta có thể xét 10 có cùng số dư khi chia cho 10. Khi cộng mỗi số với stt trong hàng sẽ nhận 10 số dư khác nhau.



#235360 đại số

Đã gửi bởi pth_tdn on 23-04-2010 - 08:50 trong Đại số

$a S_n+b S_{n-1}+cS_{n-2}=(a\alpha^n+b\alpha^{n-1}+c\alpha^{n-2})+(a\beta^n+b\beta^{n-1}+c\beta^{n-2})$
$=\alpha^{n-2}(a\alpha^2+b\alpha+c)+\beta^{n-2}(a\beta^2+b\beta+c)=0$



#235389 Min

Đã gửi bởi pth_tdn on 23-04-2010 - 11:58 trong Bất đẳng thức và cực trị

Cho x,y,z dương thỏa: x+2y+3z=1.
Tìm GTNN của: $x+4y+9z+\dfrac{9}{x}+\dfrac{4}{y}+\dfrac{1}{z}+\dfrac{13}{x+y}+\dfrac{5}{x+z}+\dfrac{10}{y+z}+\dfrac{14}{x+y+z}$



#235463 T7 (:D)

Đã gửi bởi pth_tdn on 23-04-2010 - 20:29 trong Số học

Cách em hơi dở >"<...
$A=\dfrac{1}{5}(1+\dfrac{1}{3}+...)$
$=\dfrac{1}{5}[1+\dfrac{1}{3}+\dfrac{1}{5}+(\dfrac{1}{7}+...+\dfrac{1}{15})+(\dfrac{1}{17}+...+\dfrac{1}{25})+(\dfrac{1}{27}+...+\dfrac{1}{35})+(\dfrac{1}{37}+...+\dfrac{1}{45})+...]$
$>\dfrac{1}{5}(1+\dfrac{1}{3}+\dfrac{1}{5}+5.\dfrac{1}{15}+5.\dfrac{1}{25}+5.\dfrac{1}{35}+5.\dfrac{1}{45})$
$>\dfrac{1}{5}.(1+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{1}{7}+\dfrac{1}{9})=\dfrac{1}{5}.(\dfrac{31}{15}+\dfrac{16}{63})>\dfrac{1}{5}.(2+\dfrac{1}{4})=\dfrac{9}{20}$



#235464 !?

Đã gửi bởi pth_tdn on 23-04-2010 - 20:45 trong Số học

Tìm x,y nguyên dương: $x^y \vdots y^x$



#235467 Giúp em một câu nhỏ!

Đã gửi bởi pth_tdn on 23-04-2010 - 21:30 trong Hình học

Cho hình vuông ABCD.M là 1 điểm di động trên AC. Kẻ ME,MF vuông góc với AD,DC.
C/m:BM vuông góc với EF



#235529 !?

Đã gửi bởi pth_tdn on 24-04-2010 - 13:57 trong Số học

Ta cũng dễ cm được $x \vdots y$
Đặt $x=yk$
$(yk)^y=y^{yk} \rightarrow k^y=y^{y(k-1)} \rightarrow k=y^{k-1}$
Do x,y phân biệt nên k>1.
Với k=2: Xét y>2 thì $y^{k-1}=y>k$
Giả sử điều trên đúng với k=n>2, nghĩa là: $y^{n-1}>n$.
Với k=n+1:
$y^{k-1}=y^n=y^{n-1}.y>n.y>2n>n+1$ (do n>1 và y>2)
Vậy với y>2, k>1 thì $ y^{k-1}>k$
=>y=1 hoặc 2.
Nếu y=1 thì k=1 (loại)
Nếu y=2 thì $k=2^{k-1}$
Tiếp tục dùng quy nạp: Với k=3 thì: $3<2^2$
Giả sử điều trên đúng với k=q>3.
$2^{(k+1)-1}=2^{k-1}.2>2q>q+1$
Vậy với mọi k>2 thì $k<2^{k-1}$
=>k=2.
Ta được (x,y)=(2,4),(4,2).



#235651 Lau khong post bai

Đã gửi bởi pth_tdn on 25-04-2010 - 08:18 trong Số học

Do $2^n$ không chia hết cho 3; $3162 \vdots 3$ nên $n^2 \equiv 1(mod 3)$
$\rightarrow 2^n \equiv -1 (mod 3)$
Suy ra n lẻ.
Do đó VT lẻ (trong khi VP chẵn)
Vậy PT vô nghiệm nguyên.



#235695 Lau khong post bai

Đã gửi bởi pth_tdn on 25-04-2010 - 14:14 trong Số học

n<3 không thỏa. Nếu n từ 3 trở lên thì $2^n \vdots 8$ nên $n^2 \equiv 2 (mod 8)$ không thể xảy ra.



#236665 BĐT8

Đã gửi bởi pth_tdn on 03-05-2010 - 06:35 trong Bất đẳng thức và cực trị

CMR: Với a,b,c,d dương; abcd=1 thì:
$\dfrac{1}{a^4+b^4+c^4+1}+\dfrac{1}{b^4+c^4+d^4+1}+\dfrac{1}{c^4+d^4+a^4+1}+\dfrac{1}{d^4+a^4+b^4+1}<\dfrac{1}{4}$



#237127 Đề thi vào chuyên toán THPT chuyên Hà Nội-Amsterdam

Đã gửi bởi pth_tdn on 13-08-2010 - 09:19 trong Tài liệu - Đề thi

Theo em nghĩ trường hợp 0<x<1 có thể làm thế này: $1-x+x^3-x^4+x^5-x^7+x^8=(1-x)+x^3(1-x)+x^5(1-x)(1+x)+x^8>0$