cho a,b,c là các số thực dương khác 0. CMR: $\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}\geq \frac{\sqrt{a^{2}+b^{2}}}{\sqrt{2}}+\frac{\sqrt{b^{2}+c^{2}}}{\sqrt{2}}+\frac{\sqrt{c^{2}+a^{2}}}{\sqrt{2}}$
CMR $\sum \frac{a^{2}}{b}\geq \sum \frac{\sqrt{a^{2}+b^{2}}}{\sqrt{2}}$
Lời giải hoangghiep, 21-11-2023 - 22:13
$LHS = \sum \frac{a^2}{b} = \frac{1}{4} \left(\sum \frac{a^2}{b}+3 \sum \frac{a^2}{b} \right) \geq \frac{1}{4} \left(\sum \frac{a^2}{b}+3\frac{(\sum a)^2}{\sum a} \right)= \frac{1}{4} \left(\sum \frac{a^2}{b} +3\sum a \right) = \frac{1}{4} \sum \left(\frac{a^2}{b}+3b\right) = \frac{1}{4} \sum \left(\frac{a^2+b^2}{b}+2b \right)$ $\geq \frac{1}{4} \sum 2\sqrt{\frac{a^2+b^2}{b}.2b}=\frac{1}{4} \sum 2\sqrt{2(a^2+b^2)} = \sum \frac{\sqrt{a^2+b^2}}{\sqrt{2}} = RHS $
Đi đến bài viết »
#1
Đã gửi 21-11-2023 - 13:39
WHO'S THAT POKÉMON?!
#2
Đã gửi 21-11-2023 - 22:13
$LHS = \sum \frac{a^2}{b} = \frac{1}{4} \left(\sum \frac{a^2}{b}+3 \sum \frac{a^2}{b} \right) \geq \frac{1}{4} \left(\sum \frac{a^2}{b}+3\frac{(\sum a)^2}{\sum a} \right)= \frac{1}{4} \left(\sum \frac{a^2}{b} +3\sum a \right) = \frac{1}{4} \sum \left(\frac{a^2}{b}+3b\right) = \frac{1}{4} \sum \left(\frac{a^2+b^2}{b}+2b \right)$ $\geq \frac{1}{4} \sum 2\sqrt{\frac{a^2+b^2}{b}.2b}=\frac{1}{4} \sum 2\sqrt{2(a^2+b^2)} = \sum \frac{\sqrt{a^2+b^2}}{\sqrt{2}} = RHS $
- Hahahahahahahaha yêu thích
Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: bất đẳng thức
Toán thi Học sinh giỏi và Olympic →
Bất đẳng thức - Cực trị →
Tài liệu, chuyên đề, phương pháp về Bất đẳng thức →
Bất đẳng thức Schur phiên bản 2Bắt đầu bởi vutribinh, 14-09-2024 bất đẳng thức |
|
|||
Toán Trung học Phổ thông và Thi Đại học →
Bất đẳng thức và cực trị →
$\sqrt{x+y+z+\dfrac{3}{2}}\ge\sum\sqrt{\frac{x}{1+xz}}$ với $x,y,z>0$ và $xyz=1$Bắt đầu bởi Leonguyen, 05-06-2024 bđt, bất đẳng thức |
|
|||
Solved
Toán Trung học Phổ thông và Thi Đại học →
Bất đẳng thức và cực trị →
Tìm Min $P=\sum \sqrt{ab(b+c+1)}$Bắt đầu bởi duycuonghihi, 03-06-2024 bất đẳng thức |
|
|||
Toán Trung học Cơ sở →
Bất đẳng thức và cực trị →
$\frac{19}{20} \leq \sum \frac{1}{1+a+b^2} \leq \frac{27}{20}$Bắt đầu bởi Duc3290, 12-03-2024 bất đẳng thức, hoán vị |
|
|||
Toán Trung học Cơ sở →
Bất đẳng thức và cực trị →
$\sum a^2b + abc +\frac{1}{2}abc(3-\sum ab) \leq 4$Bắt đầu bởi Duc3290, 25-02-2024 bất đẳng thức, hoán vị |
|
0 người đang xem chủ đề
0 thành viên, 0 khách, 0 thành viên ẩn danh