Đến nội dung


E. Galois

Đăng ký: 23-11-2009
Offline Đăng nhập: Hôm qua, 21:18
****-

#734485 Tính khoảng cách từ tâm quả táo đến chiếc đũa

Gửi bởi E. Galois trong 18-08-2022 - 11:05

Chọn hệ tọa độ $Oxyz$ sao cho trục của khối trụ là trục $Oz$, tâm $I$ của khối cầu thuộc trục $Ox$. Gọi $d$ là khoảng cách từ tâm $I$ của khối cầu đến trục của hình trụ. Khi đó $I(d;0;0)$. Phần chung $\mathcal{H}$ của khối trụ và khối cầu là một thể trụ nên có thể tích là:

$$v=\iiint_{\mathcal{H}}dxdydz=\iint_{\mathcal{D}}\sqrt{R^2-(x-d)^2-y^2}dxdy,$$
trong đó $\mathcal{D}$ là hình chiếu của $\mathcal{H}$ lên mặt phẳng $(Oxy)$. Dễ thấy $\mathcal{D}$ là hình tròn tâm $O$, bán kính $r$. Do đó:

$$v=\int_{0}^{2\pi}d\varphi \int_{0}^{r} \lambda\sqrt{R^2-(\lambda \cos \varphi -d)^2-\lambda^2\sin^2 \varphi} d\lambda=\int_{0}^{2\pi}d\varphi \int_{0}^{r} \lambda\sqrt{R^2-d^2-\lambda ^2 + 2d\lambda\cos \varphi } d\lambda$$

 

Về mặt lý thuyết thì có thể tính được tích phân $\int_{0}^{r} \lambda\sqrt{R^2-d^2-\lambda ^2 + 2d\lambda\cos \varphi } d\lambda$ bằng cách đổi biến và tách thành hai tích phân dạng $\int_{m}^{n}\sqrt{a^2-x^2}dx$, $\int_{m_2}^{n_2}\sqrt{a^2-x^2}xdx$. Nhưng rõ ràng là nó chả dễ tẹo nào.

Anh Thanh giúp em mở mang tầm mắt với, hic hic 




#734416 Giải tích 12: Cực trị của hàm số

Gửi bởi E. Galois trong 15-08-2022 - 23:17

https://diendantoanh...a-2b-2x-a-nb-n/

Em có tìm được một bài viết , vậy liệu trường hợp này có đúng ko ạ.

 

Đối với hàm số đa thức thì đúng.

 

Mệnh đề. Cho hàm số đa thức $y=f(x)$ bậc $n$. Nếu $f(x)$ có đúng $n$ nghiệm phân biệt thì nó có đúng $n-1$ cực trị. 

Chứng minh: Vì $y=f(x)$ là hàm đa thức nên nó liên tục, khả vi trên $\mathbb{R}$.

Giả sử $y=f(x)$ có $n$ nghiệm phân biệt là $x_1<x_2<...<x_n$. Ta chứng minh trong khoảng $(x_1;x_2)$, hàm số có ít nhất 1 cực trị. Vì hàm số $y=f(x)$ liên tục trên $(x_1;x_2)$, $f(x_1)=f(x_2)=0$ và $f(x) \neq 0, \quad \forall x \in (x_1;x_2)$ nên tồn tại ít nhất một hằng số $c \in (x_1;x_2)$ sao cho trong hai khoảng $(x_1;c), (c;x_2)$, hàm số  $f(x)$ đồng biến trong khoảng này và nghịch biến trong khoảng kia. (nếu không, hàm số đơn điệu 1 chiều trên $(x_1;x_2)$ thì $f(x_1) \neq f(x_2)$).

Vậy $x=c$ là một cực trị của hàm số $y=f(x)$

Từ đó suy ra hàm số $y=f(x)$ có ít nhất $n-1$ cực trị. 

Vì hàm số $y=f(x)$ liên tục, khả vi trên $\mathbb{R}$ nên mỗi cực trị là nghiệm của $f'(x)=0$. Nhưng $f'(x)=0$ là đa thức có bậc $n-1$ nên có tối đa $n-1$ nghiệm. 

Vậy $f(x)$ có đúng $n-1$ cực trị
 




#734392 Giải tích 12: Cực trị của hàm số

Gửi bởi E. Galois trong 15-08-2022 - 11:37

1) $f(x)=\begin{cases} \begin{matrix}  x^2 & khi  & x \leq 1 \\   x & khi & 1 <x \leq 2 \\  2 & khi & 2 \leq x \leq 3\\ -2x+8 & khi & x > 3\end{matrix} \end{cases}$

Hàm này không có cực trị trong $(0;4)$ dù thỏa mãn các giả thiết.
 
2) $f(x)=x^2(x-1)$ Hàm này có đúng 1 cực trị trong $(0;1)$ dù thỏa mãn các giải thiết



#734390 Giải tích 12: Cực trị của hàm số

Gửi bởi E. Galois trong 15-08-2022 - 11:12

hh.jpg

 

Hình thứ nhất: không có cực trị

Hình thứ hai: có 1 cực trị

Hình thứ ba: có nhiều cực trị




#734388 Tìm bán kính, chiều cao của hình viên phân biết dây cung và cung

Gửi bởi E. Galois trong 15-08-2022 - 10:12

Có thể người ta xấp xỉ hàm ngược này bằng chuỗi
$\text{sinc }x=\frac{\sin x}{x}=1-\frac{x^2}{3!}+\frac{x^4}{5!}+…$
Chỉ lấy $2$ số hạng đầu ta được xấp xỉ:
$\text{sinc }x=\frac{\sin x}{x} \approx 1-\frac{x^2}{3!}$
Nên $\text{sinc}^{-1}x \approx \sqrt{6(1-x)}$
 

Ban đầu em cũng làm như anh Thanh là dùng chuỗi hàm đề xấp xỉ. Tuy nhiên sai số lớn quá so với yêu cầu của bạn em. Họ yêu cầu sai số không vượt quá 5mm đối với 100m. Do vậy em giải phương trình bằng phương pháp Newton
 

Đặt $x=\frac{l}{2R} \in \left ( 0; \frac{\pi}{2} \right)$ ta thu được phương trình

$$f(x)=\sin x - \frac{w}{l}x  = 0$$

Ta giải phương trình này bằng phương pháp Newton. Ta có:

$$f'(x)=\cos x - \frac{w}{l}; \quad f''(x)=-\sin x$$

Ta lập dãy

$$\begin{cases}x_0 = \dfrac{\pi}{2} \\ x_{n} = x_{n-1}-\dfrac{f(x_{n-1})}{f'(x_{n-1})}=x_{n-1}-\dfrac{\sin(x_{n-1})-\dfrac{w}{l}x_{n-1}}{\cos(x_{n-1})-\dfrac{w}{l}}, \quad \forall n \geq 1\end{cases}$$

 

Sau đó chỉ cần dùng 1 file Excel là có thể cho ra kết quả với sai số tùy ý, thường thì các số liệu thực tế sẽ cho kết quả ở bước 6.

 

p/s: Hình như Diễn đàn không cho up file Excel




#734386 Giải tích 12: Cực trị của hàm số

Gửi bởi E. Galois trong 15-08-2022 - 10:06

Số cực trị của hàm số $f(x)$ không phụ thuộc vào số nghiệm của $f(x)=0$. Với giả thiết của bạn, hàm số $y=f(x)$ có thể có $0, 1, 2, ....$ đến vô số cực trị trong $(x_1,x_2)$.
 




#734368 Tìm bán kính, chiều cao của hình viên phân biết dây cung và cung

Gửi bởi E. Galois trong 13-08-2022 - 22:51

Trong thực tế sản xuất mái vòm cuốn bằng kim loại, người ta gặp bài toán sau:

 

Tìm bán kính của đường tròn $R$ và chiều cao $h$ của hình viên phân có độ dài cung là $l$ và độ dài dây cung là $w$. 

 

screenshot_1660405642.png

 

Bạn hãy giúp nhà sản xuất giải bài toán trên.

 




#734057 SKKN: Hướng dẫn học sinh giải bài toán tổ hợp tạo số bằng lập trình PASCAL

Gửi bởi E. Galois trong 21-07-2022 - 20:19

Nếu không bắt buộc thì anh Thế cứ làm đại cho xong là được, để sức sáng tạo viết bài đăng chỗ khác, như các tạp chí Toán hay đăng lên VMF chắc là hữu ích hơn :P

 

Khuê khuyên thật đúng, những năm tới anh không đầu tư vào cái SKKN này nữa, mất thời gian mà chuốc bực mình vào người




#733955 SKKN: Hướng dẫn học sinh giải bài toán tổ hợp tạo số bằng lập trình PASCAL

Gửi bởi E. Galois trong 09-07-2022 - 15:05

Có một điều anh cũng không hiểu là những SKKN được đánh giá khá, tốt là những SKKN kiểu như: phương pháp giải hệ phương trình hai ẩn, phương pháp giải phương trình vô tỉ, tìm cực trị số phức bằng phương pháp hình học, phương pháp tìm cực trị của hàm số bậc ba, ...

 

Theo anh hiểu thì SKKN cũng như một luận văn hay NCKH nói chung, phải có tính mới, tính sáng tạo. Theo anh hiểu những nội dung kia, sao người ta vẫn tìm được cái mới trong nó nhỉ? Tra google những nội dung đó thì có thể thấy hàng tá các bài báo, sáng kiến. Họ làm thế nào mà vẫn tìm ra được cái mới ở một rừng các phương pháp giải của toán sơ cấp đã phổ biến. Liệu có phải cái nhìn của anh quá phiến diện không? Hay là họ tìm được một thứ mới thật nhỉ? Anh xin các SKKN đó để đọc mà chưa được.




#733954 Basel Problem $\sum_{n=1}^\infty \dfrac{1...

Gửi bởi E. Galois trong 09-07-2022 - 14:38

Cách giải sau đây em đọc ở trên mạng. Đây chắc là cách sơ cấp nhất

 

Trong mặt phẳng với điểm O cố định, dựng đường tròn $c_1$ tâm $I_1$, bán kính $r_1=OI_1=\dfrac{2}{\pi}$. Gọi $A_1^1A_2^1$ là đường kính của đường tròn $c_1$.

a.png

Khi đó: 

$$\dfrac{1}{{OI_1}^2}=\dfrac{1}{{OA_1^1}^2}+\dfrac{1}{{OA_2^1}^2}$$

 

Gọi $OI_2$ là một đường kính của $c_1$. Dựng đường tròn $c_2$ tâm $I_2$, bán kính $r_2=OI_2$. Các đường thẳng $I_2A_1^1$ và $I_2A_2^1$ cắt đường tròn $c_2$ tại bốn điểm $A_1^2,...,A_4^2$

b.png

Khi đó: 

$$\dfrac{1}{{OI_1}^2}=\dfrac{1}{{OA_1^1}^2}+\dfrac{1}{{OA_2^1}^2}=\sum_{i=1}^4 \dfrac{1}{{OA_i^2}^2}$$

 

Gọi $OI_3$ là một đường kính của $c_2$. Dựng đường tròn $c_3$ tâm $I_3$, bán kính $r_3=OI_3$. Các đường thẳng $I_3A_i^2$ cắt đường tròn $c_3$ tại tám điểm $A_1^3,...,A_8^3$

c.png
 

Khi đó: 

$$\dfrac{1}{{OI_1}^2}=\sum_{i=1}^8 \dfrac{1}{{OA_i^3}^2}$$

 

Ta được dãy các đường tròn $(c_n)$ với các điểm $A_i^n, i=1, ..., 2^n$ thỏa mãn điều kiện:

$1) r_{n+1}=2r_n, \forall n \geq 1$

$2) \widehat{A_i^{n+1} I_{n+1} A_{i+1}^{n+1}} = \frac{1}{2} \widehat{A_i^{n} I_{n} A_{i+1}^{n}}, \quad i = 1,2,..., 2^n -1, \quad \forall n \geq 1$

 

Do đó độ dài các cung $A_i^n A_{i+1}^n$ luôn không đổi và bằng 2.

 

Đồng thời ta cũng có:

$$ \dfrac{1}{{OI_1}^2}=\sum_{i=1}^{2^n} \dfrac{1}{{OA_i^n}^2} \quad \quad (1)$$

Cho $n \to + \infty$, đường tròn $c_n$ trở thành đường thẳng đi qua $O$ và vuông góc với $OI_1$, ta coi đó là một trục số gốc $O$, các điểm $A_i^n$ luôn cách nhau 2 đơn vị, trở thành các điểm $\pm 1, \pm 3, \pm 5, ...$

Khi đó $(1)$ trở thành:

$$\dfrac{\pi^2}{8}=\sum_{n=1}^{+\infty} \dfrac{1}{(2n-1)^2}=S_{le}$$

 

Chú ý rằng: 

$$S_{chan}=\sum_{n=1}^{+\infty} \dfrac{1}{(2n)^2}=\dfrac{1}{4} =\sum_{n=1}^{+\infty} \dfrac{1}{n^2}$$

Suy ra: 

$$\sum_{n=1}^{+\infty} \dfrac{1}{n^2}= \dfrac{4}{3} S_{le} =\dfrac{\pi^2}{6}$$




#733943 Ảnh thành viên

Gửi bởi E. Galois trong 09-07-2022 - 00:01

857061_350666278384170_2080496512_o.jpg

 

Không nhớ cái ảnh này đăng chưa, bây giờ cứ đăng lại

 

Hàng mới về này là combo

Áo xanh: E.Galois

Giữa: hxthanh (thầy Thanh)

Trái: supermember (Lộc)




#733942 SKKN: Hướng dẫn học sinh giải bài toán tổ hợp tạo số bằng lập trình PASCAL

Gửi bởi E. Galois trong 08-07-2022 - 23:55

Tuyệt vời! Không cho ra trang chủ hơi phí anh Thế à!

 

P/s: Chúc mừng anh Thế xong Thạc sỹ  :D 

 

Thật ra anh đã xong thạc sỹ từ năm 2018 rồi. Luận văn của anh về Tối ưu trên đa tạp Riemann, không phải cái SKKN này đâu.

 

Cái SKKN này chỉ được người chấm của Sở GD đánh giá loại TB (59đ/100đ) thôi. Nhưng anh thấy công sức mình bỏ ra, dù là không được đánh giá cao, vẫn nên chia sẻ với mọi người bằng một chút tự hào nho nhỏ, của nhà trồng được mà.




#733941 Định lý Việt Nam

Gửi bởi E. Galois trong 08-07-2022 - 23:52

Trước diễn đàn mình còn có một bác khá lớn tuổi suốt ngày đòi đăng công trình nghiên cứu 50 năm của bác ấy với cái gì “…Toán học” ấy, lâu quá rồi mình quên. Công trình vĩ đại ấy mình cũng cho phép đăng ở một góc lộn xộn nào đó, nhưng bác ấy không chịu cứ muốn lên trang chủ cơ… khổ lắm ý!

 

Và em với anh Thanh trở thành nhà tổng biên tập khó tính bất đắc dĩ, như kiểu "dìm chết một tài năng toán học nước nhà vậy.

 

Chào mừng anh Thế trở lại :D

Anh Thế offline cưới vợ hay sao mà lâu dữ vậy anh :D

 

Anh quá bận với công việc mới nên không còn thời gian cho diễn đàn nữa. Xin lỗi các anh em nhé. Người yêu thì vẫn chưa có đâu.




#733918 Định lý Việt Nam

Gửi bởi E. Galois trong 06-07-2022 - 21:58

Đào Thanh Oai một thời làm mưa làm gió ở VMF đây mà :P

 

 

 

U là trời.

Cái ông Đào Thanh Oai này có một thời làm khổ BQT vì cứ đòi đăng các "định lý" ông ấy "phát minh" ra trên trang chủ của Diễn đàn. Mà nó có mới cho cam. Đôi khi chỉ là trường hợp đặc biệt hoặc định lý đối ngẫu của định lý Pascal. 




#733917 SKKN: Hướng dẫn học sinh giải bài toán tổ hợp tạo số bằng lập trình PASCAL

Gửi bởi E. Galois trong 06-07-2022 - 21:47

SKKN: Hướng dẫn học sinh giải bài toán tổ hợp tạo số  bằng lập trình PASCAL 

 

File gửi kèm

  • File gửi kèm  SKKN.pdf   982.93K   134 Số lần tải