Đến nội dung

E. Galois

E. Galois

Đăng ký: 23-11-2009
Offline Đăng nhập: 22-09-2023 - 22:35
****-

#740967 Đại hội Toán học Việt Nam lần thứ X

Gửi bởi E. Galois trong 08-08-2023 - 20:13

Đại hội Toán học Việt Nam lần thứ X đang diễn ra từ 8/8-12/8 tại Đà Nẵng.

Có anh em nào của Vmf đang tham gia xin hãy khoe ảnh và nói vài điều về không khí hay nội dung để mọi ghen tị nào

@bangbang1412 hình như em đang ở đó


#740914 Cách bảo mật tài liệu?

Gửi bởi E. Galois trong 04-08-2023 - 11:01

Giải pháp: mã hoá file với định dạng *.tuỳ
Viết một app decoder file *.tuỳ
Tạo k*eygen cho app theo id
Active… qua mail :D

 

Cách làm này lại quá phức tạp, người mua sản phẩm sẽ phải tải app riêng để chỉ đọc mỗi file này thôi thì họ cũng ko thích. Hơn nữa đối tượng em định bán cho cũng là những người có trình độ CNTT yếu, và bản thân em cũng không có khả năng viết app. Cách làm này có vẻ là búa bổ đầu chim sẻ rồi




#740898 Cách bảo mật tài liệu?

Gửi bởi E. Galois trong 03-08-2023 - 21:51

Mình có một bộ tài liệu pdf (soạn từ Latex), mình định rao bán nó. Tuy nhiên mình lo ngại rằng người mua đầu tiên sẽ gửi nó cho nhiều người khác để chia sẻ với nhau hòng giảm bớt chi phí và dĩ nhiên như vậy mình sẽ thu về ít doanh thu hơn.

 

Các bạn có cách nào để cài đặt sao cho file pdf đó ở mỗi máy khác nhau sẽ có mật khẩu khác nhau, hoặc chỉ đọc được trên 1 máy tính hoặc một phương pháp nào khác đòi hỏi cá nhân hóa tài liệu đó, đảm bảo chỉ có tác giả cho phép thì người đọc mới đọc được không?

 

Cảm ơn các bạn




#740897 Có bao nhiêu hoán vị khác nhau từ chữ: TOANHOCTUOITRE, trong đó các chữ số gi...

Gửi bởi E. Galois trong 03-08-2023 - 21:42

Gọi: 
$\mathsf{S}$ là tập hợp tất cả các cách sắp xếp khác nhau.
$\mathsf{T}, \mathsf{O}$ lần lượt là tập hợp các cách sắp xếp các chữ $T, O$ đứng cạnh nhau; 
$\mathsf{T}_2, \mathsf{O}_2$ lần lượt là tập hợp các cách sắp xếp 2 chữ $T, O$ đứng cạnh nhau; 
$\mathsf{T}_3, \mathsf{O}_3$ lần lượt là tập hợp các cách sắp xếp 3 chữ $T, O$ đứng cạnh nhau
$\mathsf{W}$ là tập hợp tất cả các cách sắp xếp hai chữ cái giống nhau đứng cạnh nhau.
 
Vì có đúng 14 chữ cái, trong đó có 3 chữ $T$, 3 chữ $O$, nên $n(\mathsf{S})=\dfrac{14!}{3!.3!}$.
 
Để ba chữ $T$ đứng cạnh nhau, ta chỉ cần coi cụm $TTT$ là một chữ cái. Ta còn 12 chữ cái. Khi đó $n(\mathsf{T}_3)=\dfrac{12!}{3!}$. 
Tương tự $n(\mathsf{O}_3)=\dfrac{12!}{3!}$.
Để hai chữ $T$ đứng cạnh nhau ta chỉ cần coi cụm $TT$ là một chữ cái. Ta còn 13 chữ cái. Khi đó $n(\mathsf{T}_2)=\dfrac{13!}{3!}$. 
Tương tự $n(\mathsf{O}_2)=\dfrac{13!}{3!}$.
Vậy
$$n(\mathsf{O})= n(\mathsf{O}_2)-n(\mathsf{O}_3)= \dfrac{13!}{3!}-\dfrac{12!}{3!}=2.12!=n(\mathsf{T}).$$
Để hai chữ $T$ đứng cạnh nhau và hai chữ $O$ đứng cạnh nhau, ta chỉ cần coi các cụm $TT$, $OO$ là các chữ cái. Ta còn 12 chữ cái. Khi đó $n(\mathsf{T}_2 \cap \mathsf{O}_2)=12!$. 
Tương tự 
$$n(\mathsf{T}_3 \cap \mathsf{O}_3)=10!; \quad n(\mathsf{T}_2 \cap \mathsf{O}_3)=n(\mathsf{T}_3 \cap \mathsf{O}_2)=11!.$$
Do đó
\begin{align*}  n(\mathsf{T}\cap \mathsf{O})&=n(\mathsf{T}_2\cap \mathsf{O}_2)-n(\mathsf{T}_3\cap \mathsf{O}_2)-n(\mathsf{T}_2\cap \mathsf{O}_3)+n(\mathsf{T}_3\cap \mathsf{O}_3)  \\&=12!.-2.11!.+10!=111.10!\end{align*}
Theo nguyên lý bù trừ, ta có:
\begin{align*}n(\mathsf{W}) &=& n\left (\mathsf{T}\cup\mathsf{O}\right )  \\& =& n\left (\mathsf{T}\right )+n\left (\mathsf{O}\right )  -n\left (\mathsf{T}\cap\mathsf{O}\right ) \\&=& 2.2.12!-111.10!=417.10!\end{align*}
Vậy số hoán vị cần tìm là
$$n=n(\mathsf{S})-n(\mathsf{W})=908409600$$
 
 



#740853 Tim GTLN của diện tích tam giác IAB

Gửi bởi E. Galois trong 01-08-2023 - 10:04

Cho 2 đường thẳng $d_1: mx + (m-1)y - 2m +1= 0$ và $d_2: (1- m)x + my - 4m + 1 =0.$

b) Chứng minh $d_1$; $d_2$ luôn cắt tại 1 điểm cố định là $I$. Khi $m$ thay đổi thì $I$ chạy trên đường nào.

c) Tìm GTLN của diện tích tam giác $IAB$ với $A$; $B$ là các điểm cố định mà $d_1$; $d_2$ đi qua.

 

Ta chỉ ra các điểm cố định của $d_1, d_2$. Với $d_1$, ta có:

$$ mx + (m-1)y - 2m +1= 0, \quad \forall m \Leftrightarrow  m(x+y-2)-y+1=0, \quad  \forall m \Leftrightarrow \begin{cases} x+y-2=0 \\ -y+1=0 \end{cases} \Leftrightarrow  x=y=1$$

Vậy điểm cố định của $d_1$ là $A(1;1)$.

$$(1- m)x + my - 4m + 1 =0, \quad \forall m \Leftrightarrow  x + 1 +m(y-x-4)=0, \quad  \forall m \Leftrightarrow \begin{cases} x+1=0 \\ y-x-4=0 \end{cases} \Leftrightarrow  \begin{cases} x=-1 \\ y=3 \end{cases}$$

Vậy điểm cố định của $d_2$ là $B(-1;3)$.

Dễ thấy 

$$m(1-m) + (m-1)m = 0, \quad \forall m$$

Do đó $d_1 \perp d_2$. 

Vậy giao điểm $I$ của $d_1,d_2$ là điểm luôn nhìn $AB$ dưới 1 góc vuông. Do đó khi $m$ thay đổi, $I$ chạy trên đường tròn đường kính $AB$.

 

Diện tích tam giác $IAB$ lớn nhất khi và chỉ khi khoảng cách từ $I$ đến $AB$ lớn nhất, khi đó $IAB$ là tam giác vuông cân. Tìm được $I(-1;1)$ hoặc $I(1;3)$




#740851 Cho hàm số $y = \frac{x^2}{2} - 3x - \frac...

Gửi bởi E. Galois trong 01-08-2023 - 09:03

Bài toán này rất đơn giản, bạn tìm các điểm cực trị của đồ thị hàm số như bình thường. Sau đó bạn có thể áp dụng công thức tính diện tích tam giác dựa vào tọa độ ba đỉnh

$$\mathcal{S}_{\Delta ABC}=\dfrac{1}{2} \sqrt{(AB.AC)^2-\left ( \overrightarrow{AB}.\overrightarrow{AC} \right )^2}$$




#740850 $y= f(x) = x^{\pi ^{x}}$ .Tính $f...

Gửi bởi E. Galois trong 01-08-2023 - 08:46

TXĐ: $\left ( 0;+\infty \right )$.

Ta có $\ln f(x) = \pi^x \ln x$. 

Giả sử $f(x)$ có đạo hàm là $f'(x)$. Khi đó

$$\left (\ln f(x)   \right )'= \left (\pi^x \ln x  \right )'\Rightarrow \frac{f'(x)}{f(x)}=\pi^x\ln x\ln \pi + \pi^x.\frac{1}{x} \Rightarrow  f'(x)=\left (\pi^x\ln x\ln \pi + \pi^x.\frac{1}{x}  \right )x^{\pi^x}$$

Từ đó suy ra $f'(1)$




#740849 $\lim_{x\rightarrow 1}\left ( \frac{a...

Gửi bởi E. Galois trong 01-08-2023 - 08:38

Ta có đẳng thức

$$1-x^a=(1-a)(1+x+x^2+...+x^{a-1}).$$

Do đó

\begin{align*}\lim_{x\to 1}\left ( \frac{a}{1-x^a} - \frac{1}{1-x} \right ) &=\lim_{x\to 1} \dfrac{a-(1+x+x^2+...+x^{a-1})}{1-x^a}    \\ &=\lim_{x\to 1} \dfrac{(1-x)+(1-x^2)+...(1-x^{a-1})}{1-x^a}    \\  &=\lim_{x\to 1} \dfrac{(1-x)\left[1+(1+x)+...+(1+x+...x^{a-2})\right]}{(1-x)(1+x+x^2+...+x^{a-1})}    \\  &=\lim_{x\to 1} \dfrac{1+(1+x)+...+(1+x+...x^{a-2})}{1+x+x^2+...+x^{a-1}}    \\  &=\dfrac{1+2+...+(a-1)}{1+2+...+a}=\dfrac{a(a-1)}{2a}=\dfrac{a-1}{2}. \end{align*}

 

Tương tự ta cũng có

$$\lim_{x\to 1}\left (  \frac{1}{1-x} -\frac{a}{1-x^a} \right ) =-\dfrac{b-1}{2}.$$

Do đó 

$$\lim_{x\rightarrow 1}\left ( \frac{a}{1-x^a} - \frac{b}{1-x^b} \right ) =\dfrac{a-1}{2} -\dfrac{b-1}{2} = \dfrac{a-b}{2}.$$




#740826 $\begin{cases} x_{1}=1 \\x_{n+1...

Gửi bởi E. Galois trong 30-07-2023 - 17:38

Cho dãy số $(x_{n})$ được xác định bởi $\begin{cases} x_{1}=1 \\x_{n+1}=\frac{3x_{n}+1}{2x_{n}+1}, n\geq 1 \end{cases}$

Chứng minh rằng dãy $(x_{n})$ có giới hạn. Tìm giới hạn đó

 

Ta cần chứng minh dãy số đã cho tăng và bị chặn trên bởi $\dfrac{3}{2}$.

 

1) Ta chứng minh dãy số đã cho tăng bằng quy nạp toán học. Ta có $x_2 = \dfrac{4}{3} > 1 = x_1$.

Hàm số $f(t)=\dfrac{3t+1}{2t+1}$ đồng biến trên $(0; + \infty)$ nên nếu $x_n< x_{n+1}$ thì $x_{n+1}<x_{n+2}$. Ta có điều phải chứng minh

 

2) Dễ thấy $x_n>0, \forall n \geq 1$ và

$$x_{n+1}-\dfrac{3}{2} = \dfrac{-1}{2x_n+1} \leq 0,\quad \forall n \geq 1.$$

Vậy dãy $(x_n)$ bị chặn trên.

 

Từ 1) và 2) suy ra dãy $(x_n)$ có giới hạn hữu hạn là $a>0$. Trong $x_{n+1}=\frac{3x_{n}+1}{2x_{n}+1}$, cho $n \to + \infty$, ta có

$$a=\frac{3a+1}{2a+1} \Leftrightarrow a = \dfrac{1+\sqrt{3}}{2}.$$

 

Vậy $\lim x_n = dfrac{1+\sqrt{3}}{2}.$




#740803 $n^2=(n-1)^2+$ một số lẻ

Gửi bởi E. Galois trong 29-07-2023 - 16:22

Ai giúp chứng minh phát biểu sau với: Gọi a là số nguyên dương bất kì. Bình phương của a luôn bằng với bình phương của số trước (a - 1) cộng với một số lẻ theo 1,3,5,7,9,11,13, ... Có thể hơi khó hiểu nhưng là như này: giả sử a là 5. $a^2$ = $5^2$ = 25. 25 = 16 + 5. hay $4^2$ + 5. Hoặc a là 10. $a^2$ = $10^2$ = 100. 100 = 81 + 19 = $9^2$ + 19. Hoặc a = 11. $a^2$ = $11^2$ = 121. 121 = 100 + 21 = $10^2$ + 21. Ta có thể thấy 5,10,11 bình phương lên sẽ bằng số trước nó bình phương cộng thêm một số lẻ trong dãy 1,3,5,7,9,11,13,... *Lưu ý phát biểu trên chỉ do Nhật làm ra. Chưa có chứng minh chính thức. Hoặc có thể đã xuất hiện ở đâu đó nhưng Nhật không biết. Xin cảm ơn!".

 

$\forall n \in \mathbb{Z}$, ta có

$$n^2-(n-1)^2=n^2-n^2+2n-1=2n-1 \quad \text{(lẻ)}$$

Đó là điều bạn cần phải không?




#740802 $ f(x)=\dfrac{x}{x+1}$ không chẵn cũng không lẻ

Gửi bởi E. Galois trong 29-07-2023 - 16:15

Ta biết rằng

- hàm số $y=f(x)$ xác định trên $D$ là hàm số chẵn khi và chỉ khi $\begin{cases} x \in D \Leftrightarrow -x \in D \\ f(x)=f(-x), \forall x \in D \end{cases}$

- hàm số $y=f(x)$ xác định trên $D$ là hàm số lẻ khi và chỉ khi $\begin{cases} x \in D \Leftrightarrow -x \in D \\ f(x)=-f(-x), \forall x \in D \end{cases}$.

 

Dễ thấy hàm số đề bài cho có $D=(-\infty,-1)\cup (-1,+\infty)$ mà $1\in D$ nhưng $-1\in D$. Vậy hàm số đã cho không chẵn cũng không lẻ.




#740544 Kết quả IMO 2023

Gửi bởi E. Galois trong 12-07-2023 - 20:41

screenshot_1689169230.png

 

Kỳ thi Olympic Toán Quốc tế lần thứ 64 đang diễn ra tại Chiba, Nhật Bản. Tham dự kỳ thi có 618 học sinh đến từ 112 quốc gia và vùng lãnh thổ. Đội tuyển Việt Nam gồm 06 học sinh

 

  1. Phạm Việt Hưng (12A1, Trường THPT Chuyên KHTN Hà Nội) - người đoạt HCV IMO 2022 tại Na Uy.
  2. Nguyễn An Thịnh (12 Tin, Trường THPT Chuyên Trần Phú, Hải Phòng). 
  3. Hoàng Tuấn Dũng (12 Toán 1, Trường THPT Chuyên ĐHSP Hà Nội). 
  4. Khúc Đình Toàn (12 Toán, Trường THPT Chuyên Bắc Ninh). 
  5. Trần Nguyễn Thanh Danh (12 Toán, Trường PTNK, TP.HCM). 
  6. Nguyễn Đình Kiên (11 Toán, Trường THPT Chuyên Trần Phú, Hải Phòng).

Kết quả, đội tuyển của chúng ta đã đã giành được 02 HCV, 02 HCB và 02 HCĐ, đạt tổng số điểm 180.

screenshot_1689169165.png

 

Với kết quả này Việt Nam xếp thứ 7 toàn đoàn (sau Trung Quốc, Mỹ, Hàn Quốc, Rumani, Canada, Nhật Bản).

screenshot_1689254567.png

 

 

 

 

Cùng thảo luận về đề thi tại đây




#740430 CHỨNG MINH KHÔNG CÓ SỐ HOÀN THIỆN LẺ

Gửi bởi E. Galois trong 07-07-2023 - 12:22

Thú thật là mình không đủ trình độ để đọc chứng minh của bạn.

 

Xin gửi kèm một chứng minh khác để mọi người tham khảo

 

File gửi kèm  2101.07176.pdf   110.65K   44 Số lần tải

 

Chứng minh này cũng có một lỗi sai nào đó, và mình không đủ trình độ để tìm ra.




#734485 Tính khoảng cách từ tâm quả táo đến chiếc đũa

Gửi bởi E. Galois trong 18-08-2022 - 11:05

Chọn hệ tọa độ $Oxyz$ sao cho trục của khối trụ là trục $Oz$, tâm $I$ của khối cầu thuộc trục $Ox$. Gọi $d$ là khoảng cách từ tâm $I$ của khối cầu đến trục của hình trụ. Khi đó $I(d;0;0)$. Phần chung $\mathcal{H}$ của khối trụ và khối cầu là một thể trụ nên có thể tích là:

$$v=\iiint_{\mathcal{H}}dxdydz=\iint_{\mathcal{D}}\sqrt{R^2-(x-d)^2-y^2}dxdy,$$
trong đó $\mathcal{D}$ là hình chiếu của $\mathcal{H}$ lên mặt phẳng $(Oxy)$. Dễ thấy $\mathcal{D}$ là hình tròn tâm $O$, bán kính $r$. Do đó:

$$v=\int_{0}^{2\pi}d\varphi \int_{0}^{r} \lambda\sqrt{R^2-(\lambda \cos \varphi -d)^2-\lambda^2\sin^2 \varphi} d\lambda=\int_{0}^{2\pi}d\varphi \int_{0}^{r} \lambda\sqrt{R^2-d^2-\lambda ^2 + 2d\lambda\cos \varphi } d\lambda$$

 

Về mặt lý thuyết thì có thể tính được tích phân $\int_{0}^{r} \lambda\sqrt{R^2-d^2-\lambda ^2 + 2d\lambda\cos \varphi } d\lambda$ bằng cách đổi biến và tách thành hai tích phân dạng $\int_{m}^{n}\sqrt{a^2-x^2}dx$, $\int_{m_2}^{n_2}\sqrt{a^2-x^2}xdx$. Nhưng rõ ràng là nó chả dễ tẹo nào.

Anh Thanh giúp em mở mang tầm mắt với, hic hic 




#734416 Giải tích 12: Cực trị của hàm số

Gửi bởi E. Galois trong 15-08-2022 - 23:17

https://diendantoanh...a-2b-2x-a-nb-n/

Em có tìm được một bài viết , vậy liệu trường hợp này có đúng ko ạ.

 

Đối với hàm số đa thức thì đúng.

 

Mệnh đề. Cho hàm số đa thức $y=f(x)$ bậc $n$. Nếu $f(x)$ có đúng $n$ nghiệm phân biệt thì nó có đúng $n-1$ cực trị. 

Chứng minh: Vì $y=f(x)$ là hàm đa thức nên nó liên tục, khả vi trên $\mathbb{R}$.

Giả sử $y=f(x)$ có $n$ nghiệm phân biệt là $x_1<x_2<...<x_n$. Ta chứng minh trong khoảng $(x_1;x_2)$, hàm số có ít nhất 1 cực trị. Vì hàm số $y=f(x)$ liên tục trên $(x_1;x_2)$, $f(x_1)=f(x_2)=0$ và $f(x) \neq 0, \quad \forall x \in (x_1;x_2)$ nên tồn tại ít nhất một hằng số $c \in (x_1;x_2)$ sao cho trong hai khoảng $(x_1;c), (c;x_2)$, hàm số  $f(x)$ đồng biến trong khoảng này và nghịch biến trong khoảng kia. (nếu không, hàm số đơn điệu 1 chiều trên $(x_1;x_2)$ thì $f(x_1) \neq f(x_2)$).

Vậy $x=c$ là một cực trị của hàm số $y=f(x)$

Từ đó suy ra hàm số $y=f(x)$ có ít nhất $n-1$ cực trị. 

Vì hàm số $y=f(x)$ liên tục, khả vi trên $\mathbb{R}$ nên mỗi cực trị là nghiệm của $f'(x)=0$. Nhưng $f'(x)=0$ là đa thức có bậc $n-1$ nên có tối đa $n-1$ nghiệm. 

Vậy $f(x)$ có đúng $n-1$ cực trị