Đến nội dung

phuc_90 nội dung

Có 79 mục bởi phuc_90 (Tìm giới hạn từ 15-05-2020)



Sắp theo                Sắp xếp  

#730735 Cho $\left ( G, + \right )$ là $1$ nhóm có...

Đã gửi bởi phuc_90 on 27-09-2021 - 22:56 trong Đại số đại cương

Cho $\left ( G, + \right )$ là $1$ nhóm có $7$ phần tử. Chứng minh $G$ là một nhóm giao hoán.

 

 

Cách 1:   Lấy $a$ là phần tử bất kì của $G$ khác phần tử đơn vị , khi đó theo định lý Lagrange thì $\left | \left \langle a \right \rangle \right |$ sẽ là ước của $|G|=7$

 

Suy ra $\left | \left \langle a \right \rangle \right |=1$ hoặc $\left | \left \langle a \right \rangle \right |=7$ , do $a$ khác phần tử đơn vị nên ta loại $\left | \left \langle a \right \rangle \right |=1$

 

Vậy $\left | \left \langle a \right \rangle \right |=7=|G|$  suy ra $\left \langle a \right \rangle=G$ hay G giao hoán.

 

Cách 2:   $(G, +)$ có 7 phần tử nên đẳng cấu với $(\mathbb{Z_7}, +)$ suy ra $G$ giao hoán.




#730736 $G\setminus H$ hữu hạn

Đã gửi bởi phuc_90 on 27-09-2021 - 22:59 trong Đại số đại cương

Bài toán:   Cho $H$ là một nhóm con của nhóm $G$. Chứng minh rằng $G\setminus H$ hữu hạn khi và chỉ khi $G$ hữu hạn hoặc $H=G$




#730679 $(x_{n+1}-x_n)(x_{n+1}x_n-1)\leq 0$

Đã gửi bởi phuc_90 on 24-09-2021 - 16:43 trong Dãy số - Giới hạn

Bài toán:   Cho $(x_n)_n$  là dãy các số thực dương sao cho $(x_{n+1}-x_n)(x_{n+1}x_n-1)\leq 0\,\,,\,\, \forall n\geq 1$ và $\lim_{n\to \infty} \frac{x_{n+1}}{x_n}=1$

 

Chứng minh rằng   $(x_n)_n$  là dãy hội tụ

 

Proposed by Mihai




#730646 $\lim_{n \to \infty }a_n=a\,\,,\...

Đã gửi bởi phuc_90 on 23-09-2021 - 08:59 trong Dãy số - Giới hạn

Bài toán:   Cho dãy số thực dương $(a_n)_n$ và $a,b>0$ thỏa mãn $\lim_{n \to \infty }a_n=a$ và $\lim_{n \to \infty }\sqrt{a_n}=b$

 

Chứng minh rằng:            $a=b^2$




#730591 Tìm tổng 1975 số đầu của dãy số?

Đã gửi bởi phuc_90 on 21-09-2021 - 20:19 trong Dãy số - Giới hạn

Cho dãy $(u_{n}):u_{n+2}=u_{n+1}+u_{n}$.
$S_{2012}=2013;S_{2013}=2012$,với $S_{n}=\sum_{k=1}^{n}u_{k}$.
Tìm $S_{1975}$.

 

Cho dãy $(a_n)_n$ được xác định như sau

 

$$a_0=1\,\,,\,\,a_1=1\,\,,\,\,a_{n+2}=a_{n+1}+a_n\,\,\,,\,\,\forall n\in \mathbb{N}$$

 

Khi đó bằng qui nạp ta chứng minh được $\left\{\begin{matrix}a_{n+1}^{2}-a_na_{n+2}=(-1)^{n+1}\,\,,\,\,\forall n\geq 1\\ a_1+a_2+...+a_n=a_{n+2}-2\,\,\,,\,\,\forall n\geq 1\end{matrix}\right.$

 

Mặt khác, ta thấy $u_3=u_2+u_1=a_1u_2+a_0u_1$

 

Giả sử $u_{n+2}=a_nu_2+a_{n-1}u_1\,\,\,,\,\, \forall n\leq k$

 

Khi đó

$u_{k+3}=u_{k+2}+u_{k+1}$

         $=a_ku_2+a_{k-1}u_1+a_{k-1}u_2+a_{k-2}u_1$

         $=(a_k+a_{k-1})u_2+(a_{k-1}+a_{k-2})u_1$

         $=a_{k+1}u_2+a_ku_1$

 

Theo nguyên lý qui nạp ta đã chứng minh được $u_{n+2}=a_nu_2+a_{n-1}u_1\,\,\,,\,\, \forall n\geq 1$

 

Khi đó ta tính được

$$S_{n+2}=(1+a_1+a_2+...+a_n)u_2+(1+a_0+a_1+a_2+...+a_{n-1})u_1=(a_{n+2}-1)u_2+a_{n+1}u_1\,\,\,\,\,(*)$$

 

Với $\left\{\begin{matrix}S_{2012}=2013\\S_{2013}=2012 \end{matrix}\right. $   $\Rightarrow$    $\left\{\begin{matrix}(a_{2012}-1)u_2+a_{2011}u_1=2013\\ (a_{2013}-1)u_2+a_{2012}u_1=2012\end{matrix}\right.$

 

Ta tìm được  $\left\{\begin{matrix}u_1=\frac{1-a_{2012}-2013a_{2011}}{1-a_{2010}}\\ u_2=\frac{2013a_{2012}-2012a_{2011}}{1-a_{2010}}\end{matrix}\right.$

 

Thế vào (*) ta được $S_{n+2}=\frac{(a_{n+2}-1)(2013a_{2012}-2012a_{2011})+a_{n+1}(1-a_{2012}-2013a_{2011})}{1-a_{2010}}$

 

Vậy $S_{1975}=\frac{(a_{1975}-1)(2013a_{2012}-2012a_{2011})+a_{1974}(1-a_{2012}-2013a_{2011})}{1-a_{2010}}$




#730836 Chứng minh rằng mọi ma trận giao hoán với $A$ cũng là một ma trận c...

Đã gửi bởi phuc_90 on 01-10-2021 - 16:14 trong Đại số tuyến tính, Hình học giải tích



Cho $A$ là một ma trận vuông có các phần tử nằm ngoài đường chéo chính bằng $0,$ gọi là ma trận chéo; với các phần tử trên đường chéo chính khác nhau từng đôi một. Chứng minh rằng mọi ma trận giao hoán với $A$ cũng là một ma trận chéo.

 

Giả sử $A,B$ là ma trận vuông cấp n

 

Do $AB=BA$ nên với mọi $1\leq i\neq j\leq n$ ta có $[AB]_{ij}=[BA]_{ij}$

 

$ \Rightarrow \sum_{i=1}^{n}[A]_{ik}[B]_{kj}=\sum_{i=1}^{n}[B]_{ik}[A]_{kj}\,\,\,\Rightarrow \,\,\, [A]_{ii}[B]_{ij}=[B]_{ij}[A]_{jj}$

 

do $[A]_{ii}\neq [A]_{jj}$  nên $[B]_{ij}=0$

 

Vậy $B$ là ma trận đường chéo.




#730921 Cho $P(x)=Q(x)+Q(1-x)$ và $P(0)=0$. Tính $P(P(2013))...

Đã gửi bởi phuc_90 on 04-10-2021 - 16:48 trong Đa thức

Cho các đa thức $P(x),Q(x)$ với hệ số thực thoả mãn điều kiện $P(x)=Q(x)+Q(1-x),\forall x\in \mathbb R$. Biết $P(0)=0$ và các hệ số của $P(x)$ đều không âm. Tính $P(P(2013))$.

 

Từ giả thiết $P(x)=Q(x)+Q(1-x)$ , ta thay $x$ bởi $1-x$ khi đó $P(1-x)=Q(1-x)+Q(x)$

 

Suy ra  $P(x)=P(1-x)\,\,\,,\,\,\,\forall x\in \mathbb{R}$   (*)

 

Giả sử $P(x)=a_0+a_1x+...+a_nx^n$  với các hệ số là các số thực không âm.

 

Từ (*) cho $x=0$ ta có $a_0=P(0)=P(1)=a_0+a_1+...+a_n$  suy ra  $a_1+a_2+...+a_n=0 \Rightarrow a_1=0,\,\,a_2=0,\,\,...,\,\,a_n=0$

 

Suy ra  $P(x)=a_0$  mà ta lại có $P(0)=0$  nên  $a_0=0$. Vậy $P(x)=0$

 

Điều này dẫn tới $P(P(2013))=0$




#731298 Nếu $|A|=k \ne 0$, hãy tính $|2A-3I|$ theo $k...

Đã gửi bởi phuc_90 on 24-10-2021 - 21:36 trong Đại số tuyến tính, Hình học giải tích

Cho A là ma trận vuông cấp 3 thỏa mãn  $A^2-3A+2I=0$

a, Chứng minh: $A$ khả nghịch

b, Tìm $A^{-1}$ theo $A$ và $I$

c, Nếu $|A|=k \ne 0$, hãy tính $|2A-3I|$ theo $k$

 

Ta có  $A^2-3A+2I_n=0 \,\,\,\Rightarrow \,\,\,A\left ( \frac{3}{2}I_n-\frac{1}{2}A \right )=\left ( \frac{3}{2}I_n-\frac{1}{2}A \right )A=I_n$

 

nên $A$  khả nghịch và  $A^{-1}=\left ( \frac{3}{2}I_n-\frac{1}{2}A \right )$

 

Đặt $|2A-3I_n|=a\in \mathbb{R}$ , ta lại có $(2A-3I_n)(2A-3I_n)=I_n$

 

$\Rightarrow$     $a^2=|2A-3I_n||2A-3I_n|=|(2A-3I_n)(2A-3I_n)|=|I_n|=1$

 

Vậy  $|2A-3I_n|=1$  nếu $a>0$  hoặc  $|2A-3I_n|=-1$  nếu  $a<0$




#731067 $ P(-x^{2}-x-1)=x^{4}+2x^{3}+2022x^{2...

Đã gửi bởi phuc_90 on 09-10-2021 - 21:07 trong Đa thức

Tìm tất cả các đa thức thỏa mãn với mọi x thuộc R, biết: $ P(-x^{2}-x-1)=x^{4}+2x^{3}+2022x^{2}+2021x+2019 $

 

 

Đặt $G(x)=-x^2-x-1$

 

Từ giả thiết ta có $P(-x^2-x-1)=(x^2+x+1-1)(x^2+x+1+2020)+2019\,\,,\,\,\forall x\in \mathbb{R}$

 

$\Rightarrow P(G(x))=(-G(x)-1)(-G(x)+2020)+2019=(G(x))^2-2019G(x)-1\,\,,\,\,\forall x\in \mathbb{R}$

 

Giả sử $P(x)$ có bậc là $n$ và đa thức $H(x)$ có bậc $n-3$ sao cho $P(x)=x^3H(x)+x^2-2019x-1\,\,,\,\,\forall x\in \mathbb{R}$   (*)

 

Khi đó, $(G(x))^2-2019G(x)-1=P(G(x))=(G(x))^3H(G(x))+(G(x))^2-2019G(x)-1\,\,,\,\,\forall x\in \mathbb{R}$

 

$\Rightarrow (G(x))^3H(G(x))=0\,\,,\,\,\forall x\in \mathbb{R}$

 

Ta thấy $-x^2-x-1=-(x+\frac{1}{2})^2-\frac{3}{4}<0\,\,,\,\,\forall x\in \mathbb{R}$

 

Suy ra đa thức $G(x)=-x^2-x-1$ luôn khác 0 với mọi $x\in \mathbb{R}$

 

Từ đó suy ra $H(G(x))=0\,\,,\,\,\forall x\in \mathbb{R}$, điều này dẫn đến đa thức $H(x)$ có bậc $n-3$ nhưng có vô số nghiệm trong $\mathbb{R}$

 

Suy ra $H(x)=0\,\,,\,\,\forall x\in \mathbb{R}$, từ (*) suy ra được $P(x)=x^2-2019x-1$ chính là đa thức cần tìm




#731021 Tính tổng Sn (khó)

Đã gửi bởi phuc_90 on 07-10-2021 - 09:25 trong Mệnh đề - tập hợp

Cộng 2 số hạng đầu tiên, rồi lấy kết quả này cộng với số hạng tiếp theo...lặp lại quá trình này sẽ ra kết quả.



#731010 Chứng minh rằng $F(x)={{[P(x)]}^{2}}+1...

Đã gửi bởi phuc_90 on 06-10-2021 - 22:27 trong Đa thức

 

Đa thức $P(x)$ với hệ số nguyên thỏa mãn $\left\{\begin{matrix} P(2006)=2006! \\ xP(x-1)=(x-2006)P(x),\forall x\in \mathbb{R}. \end{matrix}\right.$
 
Chứng minh rằng $F(x)={{[P(x)]}^{2}}+1$ bất khả quy trên $\mathbb{Z}$. 

 

 

Bổ đề 1:   Nếu $H(x)$ là đa thức hệ số nguyên với   $deg H < \infty$   thỏa $\left\{\begin{matrix}H(a_0)=1\,\,,\,\,a_0\in \mathbb{Z}\\H(x)=H(x-1)\,\,,\,\,\forall x\in \mathbb{R} \end{matrix}\right.$       thì      $H(x)=1$

 

Thật vậy, từ điều kiện $\left\{\begin{matrix}H(a_0)=1\,\,,\,\,a_0\in \mathbb{Z}\\H(x)=H(x-1)\,\,,\,\,\forall x\in \mathbb{R} \end{matrix}\right.$

 

Ta suy ra được $H(n)=1\,\,,\,\,\forall n\in \mathbb{Z}$ , khi đó đa thức $H(x)-1$ sẽ có vô số nghiệm trên tập các số nguyên nên      $H(x)-1\equiv 0$

 

Suy ra $H(x)=1$

 

Bổ đề 2:   Đa thức $P(x)=(x-a_1)^2(x-a_2)^2...(x-a_n)^2+1$ là bất khả quy trên $\mathbb{Z}[x]$ với $a_1,a_2,..,a_n$ là các số nguyên

 

Giả sử    $P(x)=Q(x)R(x)$ với $Q(x),R(x)$   là các đa thức hệ số nguyên và    $1\leq deg Q\,\,,\,\,deg R\leq n-1$

 

Ta có    $Q(a_i)R(a_i)=P(a_i)=1\,\,,\,\,i=\overline{1,n}$

 

Suy ra     $Q(a_i)=R(a_i)=1$ hoặc $Q(a_i)=R(a_i)=-1$  với mọi $1\leq i\leq n$

 

Khi đó đa thức    $Q(x)-R(x)$ có $deg(Q-R)\leq n-1$    nhưng có tới $n$ nghiệm là     $a_1,a_2,..,a_n$

 

Do đó    $Q(x)-R(x)\equiv 0$ hay $Q(x)=R(x)$

 

Khi đó ta có    $Q^2(x)=P(x)=(x-a_1)^2(x-a_2)^2...(x-a_n)^2+1$

 

suy ra   $\left ( Q(x)-(x-a_1)...(x-a_n) \right )\left ( Q(x)+(x-a_1)...(x-a_n) \right )=1$ (điều này không thể xảy ra)

 

Vậy $P(x)$ là đa thức bất khả quy trên  $\mathbb{Z}[x]$

 

Trở lại bài toán

 

Ta có $\left\{\begin{matrix}0.P(-1)=-2006.P(0)\\ 1.P(0)=-2005.P(1)\\ ....................\\ 2006.P(2005)=0.P(2006)\end{matrix}\right.$     suy ra    $P(0)=P(1)=...=P(2005)=0$

 

Khi đó ta có thể viết   $P(x)$   dưới dạng    $P(x)=x(x-1)...(x-2005)H(x)$   với   $H(x)$   là đa thức có hệ số nguyên và    $deg H < deg P$

 

Từ điều kiện    $xP(x-1)=(x-2006)P(x)\,\,,\,\,\forall x\in \mathbb{R}$

 

Ta suy ra được   $x(x-1)...(x-2006)H(x-1)=x(x-1)...(x-2006)H(x)\,\,,\,\,\forall x\in \mathbb{R}$

 

Điều này chỉ xảy ra khi     $H(x)=H(x-1)\,\,,\,\,\forall x\in \mathbb{R}$

 

Mặt khác, ta có    $2006!=P(2006)=2006! H(2006)$   suy ra   $H(2006)=1$

 

Khi đó áp dụng các bổ đề trên ta có    $P^2(x)+1$    bất khả quy trên    $\mathbb{Z}[x]$




#729887 $\sqrt{\frac{a+abc}{b+c}}+\...

Đã gửi bởi phuc_90 on 23-08-2021 - 15:57 trong Bất đẳng thức - Cực trị

Cho a,b,c là các số thực không âm thỏa $a+b+c=2$. Chứng minh rằng:

 

$$\sqrt{\frac{a+abc}{b+c}}+\sqrt{\frac{b+abc}{c+a}}+\sqrt{\frac{c+abc}{a+b}}\geq 2$$




#730585 $\left\{\begin{matrix} x_{1}=1...

Đã gửi bởi phuc_90 on 21-09-2021 - 12:44 trong Dãy số - Giới hạn

Cho dãy $\{x_{n} \}_{n \ge 1}$ được xác định bởi $\left\{\begin{matrix} x_{1}=1\\ x_{n}=n.x_{n-1}+1 \end{matrix}\right.$
Hãy tìm số n lớn nhất mà <1000 sao cho $x_{n}$ tận cùng là 2 chữ số 0.

 

Theo giả thiết ta có

                               $x_n=nx_{n-1}+1$

                                     $=n\left ( (n-1)x_{n-2}+1 \right )+1$

                                     $=n(n-1)x_{n-2}+n+1$

                                      ...............

                                     $=n(n-1)...2\,+\,n(n-1)...3\,\,+\,\,n(n-1)...4\,\,+\,\,...\,\,+\,\,n(n-1)\,\,+\,\,n+1$

 

Với $n=4k+3, k\in \mathbb{N^*}$ ta có $\left\{\begin{matrix}1+n=4k+4\equiv 0 \,\,\,(mod \,\, 4)\\ n(n-1)=4(4k^2+5k+1)+2\equiv 2 \,\,\,(mod \,\,4)\\ n(n-1)(n-2)\equiv 2(n-2)=2(4k+1)\equiv 2 \,\,\,(mod \,\,4)\end{matrix}\right.$

 

suy ra  $1+n+n(n-1)+n(n-1)(n-2)\equiv 0 \,\,\,(mod \,\,4)$

 

Mặt khác, $\forall n\geq 4$ ta có $4\,\,|\,\, n(n-1)(n-2)(n-3)$

 

Từ những điều trên ta suy ra được $u_n\equiv 0 \,\,\,(mod \,\, 4)$ khi $n=4k+3, \,\,k\in \mathbb{N^*}$    (1)

 

Bây giờ ta sẽ tìm $n$ sao cho $u_n\equiv 0\,\,\, (mod \,\, 25)$ bằng phương pháp liệt kê (ai có cách nào gọn hơn thì post lên để hoàn thiện cho bài này nhé)

 

-   Với $n=5k \,\,,\,\, k\geq 2$ thì $n(n-1)(n-2)(n-3)(n-4)(n-5)\equiv 0\,\,\,(mod\,\, 25)$

 

Khi đó để $u_n\equiv 0\,\,\, (mod \,\, 25)$ thì ta sẽ tìm $n$ với điều kiện như trên sao cho

$$A=1+n+n(n-1)+n(n-1)(n-2)+n(n-1)...(n-3)+n(n-1)...(n-4)\equiv 0\,\,\, (mod\,\, 25)$$

 

Nhưng điều này không xảy ra vì  $\left\{\begin{matrix}1+n\equiv 5k+1\,\,(mod\,\,25)\\ n(n-1)\equiv -5k\,\,(mod\,\,25)\\ n(n-1)(n-2)\equiv -5k(n-2)\equiv 10k\,\,(mod\,\,25)\\ n(n-1)...(n-3)\equiv 10k(n-3)\equiv -5k\,\,(mod\,\,25)\\ n(n-1)...(n-4)\equiv -5k(n-4)\equiv -5k\,\,(mod\,\,25)\end{matrix}\right.$  suy ra $A\equiv 1 \,\,\, (mod \,\, 25)$

 

Bằng lập luận tương tự như vậy với $n=5k+1\,\,,\,\, n=5k+2\,\,,\,\, n=5k+3\,\,,\,\, n=5k+4$

 

thì ta tìm được $n=25l+7\,\,,\,\, l\geq 1$  thỏa $u_n\equiv 0\,\,\, (mod \,\, 25)$    (2)

 

Từ (1) và (2) ta suy ra được $n=100s+7\,\,\,,\,\, s\geq 1$ thì $u_n\equiv 0 \,\,\,(mod\,\, 100)$

 

Vậy $n=907$ thỏa mãn đề bài




#730022 Giúp thành viên tìm đọc tài liệu Hình học Olympics

Đã gửi bởi phuc_90 on 31-08-2021 - 14:36 trong Tài liệu, chuyên đề, phương pháp về Hình học

wannable

Cô nhóc này inbox hỏi mình tài liệu Hình học để thi Olympics, các bạn giúp em ấy nha ??

 

Solving problems in geometry Insights and strategies for mathematical olympiad
 

https://drive.google...iew?usp=sharing




#730000 Chứng minh các tập đóng trong $\mathbb{R}^{2}...

Đã gửi bởi phuc_90 on 30-08-2021 - 08:58 trong Tôpô

Ta sẽ sử dụng mệnh đề sau :  A là một tập đóng trong $\mathbb{R^2}$ nếu và chỉ nếu mọi dãy trong A, nếu hội tụ trong $\mathbb{R^2}$ thì giới hạn của nó thuộc A.

 

a)   Với dãy $\left \{ \left ( x_n,y_n \right ) \right \}$ trong A hội tụ về $\left ( x,y \right )$ trong $\mathbb{R^2}$. Ta có $\left ( x_n,y_n \right )\in A$ nên $x_ny_n=1$ hay $x_n=\frac{1}{y_n}$.

 

Do một dãy số chỉ có duy nhất một giới hạn nên $x=\lim_{n\rightarrow \infty }x_n=\lim_{n\rightarrow \infty }\frac{1}{y_n}=\frac{1}{y}$, điều này dẫn đến $xy=1$ hay $\left ( x,y \right )\in A$.

 

Vậy  $A=\left \{ \left ( x,y \right )\in\mathbb{R^2}\mid xy=1 \right \}$ là tập đóng

 

Câu b), c) lập luận tương tự




#729957 $\mathop{\lim}\limits_{n\to\infty}\left[{...

Đã gửi bởi phuc_90 on 28-08-2021 - 16:57 trong Giải tích

Ta có $\left \| \left ( n+\lambda  \right )x+y \right \|\leq \left \| nx+y \right \|+\left \| \lambda x\right \| ,\forall n$

 

hay $\left \| \left ( n+\lambda  \right )x+y \right \|- \left \| nx+y \right \|\leq \left \| \lambda x\right \| ,\forall n$

 

Suy ra $\lim_{n\rightarrow \infty }\left (\left \| \left ( n+\lambda  \right )x+y \right \|- \left \| nx+y \right \|  \right )\leq \left \| \lambda x\right \|$  (*)

 

Đẳng thức (*) chỉ xảy ra khi và chỉ khi $\left \| \left ( n+\lambda  \right )x+y \right \|- \left \| nx+y \right \|=\left \| \lambda x\right \| ,\forall n$

 

Từ đây ta tìm được $\lambda=0$




#730221 $|a_{m}-a_{n}| \geq \frac{1}...

Đã gửi bởi phuc_90 on 07-09-2021 - 18:37 trong Dãy số - Giới hạn

Chứng minh rằng tồn tại dãy số $(a_{n})$ thỏa mãn:
$i) \exists c_{1},c_{2} \in \mathbb{R}: c_{1} \leq a_{n} \leq c_{2} \forall n \in \mathbb{N}^{*};$
$ii) \forall m,n \in \mathbb{N}^{*},m \neq n, |a_{m}-a_{n}| \geq \frac{1}{m-n}.$

 

Với mọi số thực $t\geq 2$ ta có $t+\frac{1}{t}-\frac{5}{2}=\frac{(t-2)(2t-1)}{2t}\geq 0$ nên $t+\frac{1}{t}\geq \frac{5}{2}$  (*)

 

Bổ đề :  Với $\frac{m}{n}\geq 2$ hoặc $m<n$ thì $\left | \frac{2}{m}-\frac{2}{n} \right |\geq \frac{1}{m-n}$

 

Thật vậy, với $\frac{m}{n}\geq 2$ ta có $(m-n)\left | \frac{2}{m}-\frac{2}{n} \right |=2(m-n)\frac{|n-m|}{mn}=2(m-n)\frac{-(n-m)}{mn}=2\left ( \frac{m}{n}+\frac{n}{m}-2 \right )$

 

Theo BĐT (*) ta có $\frac{m}{n}+\frac{n}{m}\geq \frac{5}{2}$ suy ra $(m-n)\left | \frac{2}{m}-\frac{2}{n} \right |\geq 1$

 

hay $\left | \frac{2}{m}-\frac{2}{n} \right |\geq \frac{1}{m-n}$

 

Còn trường hợp $m<n$ thì $\left | \frac{2}{m}-\frac{2}{n} \right |> 0> \frac{1}{m-n}$

 

Vậy bổ đề được chứng minh hoàn toàn

 

Bây giờ, với mọi số nguyên dương $n$ ta có $0<\frac{2}{n}\leq 2$

 

Đặt $a_n=\frac{2}{n}$ thì $(a_n)_{n\in \mathbb{N^*}}$ là dãy bị chặn và đặt $n_k=2k, \forall k\in \mathbb{N^*}$

 

Theo bổ đề trên thì dãy con $(a_{n_k})_{k\in \mathbb{N^*}}$ của $(a_n)_{n\in \mathbb{N^*}}$ chính là dãy cần tìm.

 

Note: $n_{k_i} > n_{k_j}$ thì $\frac{n_{k_i}}{n_{k_j}}\geq 2$




#730213 Tìm số hạng tổng quát của dãy số $(u_{n})$

Đã gửi bởi phuc_90 on 07-09-2021 - 16:50 trong Dãy số - Giới hạn

Cho dãy số thực $(U_{n})$ xác định bởi 

$\left\{\begin{matrix} u_{1} =\frac{-2}{5}& \\ 25u_{n+1}u_{n}+15u_{n+1}+15u_{n}+10=\sqrt{25u_{n}^{2}+30u_{n}+10} & \end{matrix}\right.$, $n\geq 1$

Tìm số hạng tổng quát của dãy số $(u_{n})$

 

 

$25u_{n+1}u_{n}+15u_{n+1}+15u_{n}+10=\sqrt{25u_{n}^{2}+30u_{n}+10}$

 

$\Leftrightarrow (5u_{n+1}+3)(5u_n+3)+1=\sqrt{(5u_n+3)^2+1}$

 

Đặt $v_n=5u_n+3$ ta có $v_1=5u_1+3=1$ và $v_{n+1}v_n+1=\sqrt{v_{n}^2+1}$

 

Bình phương 2 vế và biến đổi ta được $v_n=\frac{2v_{n+1}}{1-v_{n+1}^2}$

 

Ta thấy $v_1=1=tan\frac{\pi}{4}$ và $v_2=\sqrt{2}-1=tan\frac{\pi}{8}$

 

Nên bằng phương pháp qui nạp ta chứng minh được $v_n=tan\frac{\pi}{2^{n+1}}$

 

suy ra  $u_n=\frac{tan\frac{\pi}{2^{n+1}}}{5}-\frac{3}{5}$




#730280 $u_{n+1}=\frac{u_{n}^{4}}{u_{n}^{4}-8u_{n}^2+8}$

Đã gửi bởi phuc_90 on 10-09-2021 - 15:03 trong Dãy số - Giới hạn

Cho dãy $\left\{\begin{matrix} u_{1}=2 & \\ u_{n+1}=\frac{u_{n}^{4}}{u_{n}^{4}-8u_{n}^2+8} & \end{matrix}\right.$

Tính $\lim_{n\rightarrow \infty }\frac{u_{n}}{n}$

 

 

Ta có $u_1=2, u_2=-2, u_3=-2$, bằng qui nạp ta chứng minh được $u_n=-2, \forall n\geq 2$

 

Suy ra $\lim_{n \to \infty } \frac{u_n}{n}=\left (\lim_{n \to \infty }\frac{1}{n}  \right )\left ( \lim_{n \to \infty }u_n \right )=0.\left ( -2 \right )=0$




#730279 Chứng minh:$${\rm span}\left\langle {...

Đã gửi bởi phuc_90 on 10-09-2021 - 14:48 trong Đại số tuyến tính, Hình học giải tích

Cho $V$ là $1$ không gian vector, và $S$ là $1$ họ vectors thuộc $V.$  Gọi số tối đa các vectors độc lập tuyến tính có thể rút ra từ $S$ là $r.$ Giả sử ${S}'$ gồm $r$ vectors độc lập tuyến tính rút ra từ $S.$ Chứng minh $\operatorname{span}\left \langle {S}' \right \rangle= \operatorname{span}\left \langle S \right \rangle.$ Lưu ý kí hiệu $\operatorname{span}\left \langle A \right \rangle$ là chỉ bao tuyến tính của họ vectors $A.$

 

Giả sử $S'=\left \{ s_i\in S: i=\overline{1,r} \right \}$, ta có $S'\subset S$ suy ra $spanS' \subset spanS$

 

Với $a_1s_1+a_2s_2+...+a_rs_r+as=0$ (*) trong đó $s\in S\setminus S'$  và $a,a_1,a_2,...,a_r\in \mathbb{K}$

 

Nếu $a=0$ thì từ (*) suy ra $a_1s_1+a_2s_2+...+a_rs_r=0$ suy ra $a_1=a_2=...=a_r=0$

 

Do đó $s_1,s_2,...,s_r,s$ là các vector độc lập tuyến tính (mâu thuẫn với giả thiết chỉ có tối đa $r$ các vector độc lập tuyến tính)

 

Vậy $a\neq 0$ và (*) được viết lại thành $s=-\frac{a_1}{a}s_1-\frac{a_2}{a}s_2-...-\frac{a_r}{a}s_r$  suy ra $s\in spanS'$

 

Từ đó suy ra được $spanS \subset spanS'$

 

Vậy $spanS'=spanS$




#729901 $\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt...

Đã gửi bởi phuc_90 on 24-08-2021 - 17:08 trong Bất đẳng thức - Cực trị

Cho $x,y\in \left [ 0,1 \right ]$. Chứng minh rằng:

 

$$\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{\left ( 1-x \right )^2+\left ( 1-y \right )^2}\geq \left ( 1+\sqrt{5} \right )\left ( 1-xy \right )$$




#730282 $a_1>0, a_{n+1}=\frac{a^{3}_{n...

Đã gửi bởi phuc_90 on 10-09-2021 - 15:17 trong Dãy số - Giới hạn

Bài toán:   Cho $a\in \mathbb{R^+}$ và dãy số thực $(a_n)_n$ được định nghĩa như sau

 

$$a_1>0, a_{n+1}=\frac{a^{3}_{n}+3aa_n}{3a^2_{n}+a}, \forall n\geq 1$$

 

Hãy xác định tất cả các giá trị của $a_1$ để dãy trên hội tụ và tìm giới hạn của dãy .




#730853 $$2011x+y=3z^2$$

Đã gửi bởi phuc_90 on 02-10-2021 - 16:05 trong Số học

Bài toán:   Tìm tất cả nghiệm nguyên dương $x,y,z$ của phương trình sau

 

$$2011x+y=3z^2$$




#730490 $f(\frac{a^2+b^2}{a+b})\geq f(\frac...

Đã gửi bởi phuc_90 on 17-09-2021 - 16:14 trong Phương trình hàm

Bài toán:   Tìm tất cả hàm số $f:\mathbb{R^+}\rightarrow \mathbb{R^+}$ liên tục trên $\mathbb{R^+}$ sao cho

 

$$f\left ( \frac{a^2+b^2}{a+b} \right )\geq f\left ( \frac{a}{2} \right )+f\left ( \frac{b}{2} \right )\,\,, \forall a,b\in \mathbb{R^+}$$




#730159 Nhóm hữu hạn có cấp 45

Đã gửi bởi phuc_90 on 05-09-2021 - 17:38 trong Góc Tin học

Mô tả tất cả (sai khác một đẳng cấu) các nhóm hữu hạn có cấp 45