Đến nội dung

phuc_90 nội dung

Có 79 mục bởi phuc_90 (Tìm giới hạn từ 28-04-2020)



Sắp theo                Sắp xếp  

#730417 Ngẫu hứng với $u_1=0, u_2=2, u_{n+1}=\frac{u_n+1...

Đã gửi bởi phuc_90 on 15-09-2021 - 15:48 trong Dãy số - Giới hạn

Sau nhiều lần tấn công bài toán https://diendantoanh...-forall-n-ge-2/  không thành công nhưng có một bài toán dễ dàng hơn như sau

 

Bài toán:   Cho dãy số thực $(u_n)_n$ được xác định như sau

 

$$a=\frac{3-\sqrt{5}}{2}\,\,,\,\, u_1=0\,\,,\,\, u_2=2\,\,,\,\, u_{n+1}=\frac{u_n+1}{3+\sqrt{u_{n-1}}},\,\, \forall n\geq 2$$

 

Chứng minh rằng              $\left | u_n-a \right |<\frac{u_{n-1}}{3+\sqrt{u_{n-2}}}\,\,,\,\, \forall n\geq 3$




#730420 $B'(a,r)=\{ b\in E\,\,|\,\,|| a-b...

Đã gửi bởi phuc_90 on 15-09-2021 - 16:27 trong Giải tích

Một bài tập nhỏ về quả cầu đóng $B'(a,r)$

 

Bài toán:   Cho $\left ( E,\left \| . \right \| \right )$ là một $\mathbb{R}$ - không gian vector định chuẩn, $(a,b)\in E^2 \,\,,\,\, (r,s)\in \mathbb{R^{2}_{+}}\,\,,\,\, \lambda\in \mathbb{R}$

 

Chứng minh rằng:

 

      1)   $B'\left ( a,r \right )=a+B'\left ( 0,r \right )$

 

      2)   $B'\left ( 0,r \right )+B'(0,s)=B'\left ( 0,r+s \right )$

 

      3)  $B'\left ( a,r \right )+B'(b,s)=B'\left ( a+b,r+s \right )$

 

      4)  $\lambda B'\left ( a,r \right )=B'\left ( \lambda a,\left | \lambda  \right |r \right )$

 

      5)  $B'\left ( a,r \right )\bigcap B'\left ( b,s \right )\neq \varnothing$    $ \Leftrightarrow$      $\left \| a-b \right \|\leq r+s$

 

      6)  $B'\left ( a,r \right )\subset B'\left ( b,s \right )$            $\Leftrightarrow$       $\left \| a-b \right \|\leq s-r$

 

      7)  $B'\left ( a,r \right )= B'\left ( b,s \right )$            $\Leftrightarrow$         $\left\{\begin{matrix}a=b\\ r=s\end{matrix}\right.$




#730853 $$2011x+y=3z^2$$

Đã gửi bởi phuc_90 on 02-10-2021 - 16:05 trong Số học

Bài toán:   Tìm tất cả nghiệm nguyên dương $x,y,z$ của phương trình sau

 

$$2011x+y=3z^2$$




#731368 Các kiến thức cơ bản về Supremum và Infimum

Đã gửi bởi phuc_90 on 29-10-2021 - 16:25 trong Giải tích

Có bạn hỏi tôi về cách tìm SupremumInfimum của một tập $A\subset \mathbb{R}$ như thế nào ? mong bài viết nho nhỏ này sẽ giúp các bạn hiểu rõ hơn về Supremum và Infimum của một tập hợp $A\subset \mathbb{R}$, từ đó có một phương pháp giải các bài toán dạng này cho riêng mình.

 

Định nghĩa

 

Cho $A$ là tập con khác rỗng của $\mathbb{R}$.

 

$\bullet$   Tập $A$ được gọi là bị chặn trên nếu $\exists M\in\mathbb{R}:\,\,\,a\leq M\,\,,\,\forall a\in A$.

 

Với $A$ là tập bị chặn trên thì Supremum của $A$, ký hiệu $Sup A$ là chặn trên nhỏ nhất của $A$, tức là nếu $m$ là một chặn trên của $A$ thì ta luôn có $Sup A\leq m$.  Nếu tập $A$ không bị chặn trên thì người ta đặt $Sup \,A=+\infty$.

 

$\bullet$   Tập $A$ được gọi là bị chặn dưới nếu $\exists M\in\mathbb{R}:\,\,\,a\geq M\,\,,\,\forall a\in A$.

 

Với $A$ là tập bị chặn dưới thì Infimum của $A$, ký hiệu $Inf A$ là chặn dưới lớn nhất của $A$, tức là nếu $n$ là một chặn dưới của $A$ thì ta luôn có $Inf A\geq n$.  Nếu tập $A$ không bị chặn dưới thì người ta đặt $Inf \,A=-\infty$

 

Một số kết quả liên quan đến Supremum và Infimum

 

Định lý 1:   Cho $A$ là tập con khác rỗng của $\mathbb{R}$ và bị chặn trên. $Sup A=m$ khi và chỉ khi $\left\{\begin{matrix}a\leq m\,\,,\,\forall a\in A\\ \forall \varepsilon >0\,\,,\,\exists a^*\in A:\,\,a^*>m-\varepsilon \end{matrix}\right.$.

 

Hơn nữa, nếu $m$ là một chặn trên của $A$ và $m\in A$ thì $Sup A=m$, lúc này $Sup A$ chính là Maximum của tập $A$.

 

Chứng minh

 

$\left ( \Rightarrow  \right )$  Giả sử $Sup A=m$

 

Nếu $\exists \varepsilon >0$ sao cho $m-\varepsilon$ là một chặn trên của $A$ thì $m-\varepsilon \geq Sup A=m$  (vô lý)

 

Vậy $\forall \varepsilon >0$ thì $m-\varepsilon$ không thể là một chặn trên của $A$ hay $\forall \varepsilon >0\,\,,\,\exists\,a^*\in A:\,\,\,a^*>m-\varepsilon$.

 

$\left ( \Leftarrow   \right )$   Giả sử   $\left\{\begin{matrix}a\leq m\,\,,\,\forall a\in A\\ \forall \varepsilon >0\,\,,\,\exists a^*\in A:\,\,a^*>m-\varepsilon \end{matrix}\right.$

 

Ta có $a\leq m\,\,,\,\forall a\in A$ nên $m$ là một chặn trên của $A$, do đó $Sup A\leq m$.

 

Đặt $d=m-Sup A\geq 0$, nếu $d>0$ thì theo giả thiết, tồn tại $a^*\in A:\,\,\,a^*>m-d=Sup A$  (vô lý).

 

Vậy $d=0$  hay  $Sup A=m$.

 

Định lý 2:   Cho $A$ là tập con khác rỗng của $\mathbb{R}$ và bị chặn dưới. $Inf A=n$ khi và chỉ khi $\left\{\begin{matrix}a\geq n\,\,,\,\forall a\in A\\ \forall \varepsilon >0\,\,,\,\exists a^*\in A:\,\,a^*<n+\varepsilon \end{matrix}\right.$.

 

Hơn nữa, nếu $n$ là một chặn dưới của $A$ và $n\in A$ thì $Inf A=n$, lúc này $Inf A$ chính là Minximum của tập $A$.

(Chứng minh xem như bài tập)

 

Định lý 3:   Nếu $(u_n)_n$ là dãy số thực và là dãy tăng thì $\lim_{n \to \infty } u_n=Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}$

 

Chứng minh

 

Nếu $(u_n)_n$ không bị chặn trên, tức là $\forall M>0\,,\,\exists n_0\in \mathbb{N}:\,\,u_{n_0}>M$  (*)  và  $Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}=+\infty$

 

Do $(u_n)_n$ là dãy đơn điệu tăng nên (*) được viết lại thành  $\forall M>0\,,\,\exists n_0\in \mathbb{N}\,,\,\forall n\geq n_0:\,\,u_n>M$

 

Đây chính là định nghĩa của $\lim_{n \to \infty }u_n=+\infty$. Suy ra $\lim_{n \to \infty } u_n=Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}$.

 

Nếu $(u_n)_n$ bị chặn trên, tức là $Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}$ tồn tại, đặt $Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}=a$

 

Khi đó, theo định lý 1 thì  $\forall \varepsilon >0\,,\,\exists n_0\in \mathbb{N}:\,\,a+\varepsilon >u_{n_0}>a-\varepsilon$, do $(u_n)_n$ là dãy đơn điệu tăng nên điều này được viết lại thành

 

$$\forall \varepsilon >0\,,\,\exists n_0\in \mathbb{N}\,,\,\forall n\geq n_0:\,\,\left | u_n-a \right |<\varepsilon$$

 

Suy ra $\lim_{n \to \infty }u_n=a=Sup\left \{ u_n\,|\,n\in \mathbb{N} \right \}$

 

Định lý 4:   Nếu $(u_n)_n$ là dãy số thực và là dãy giảm thì $\lim_{n \to \infty } u_n=Inf\left \{ u_n\,|\,n\in \mathbb{N} \right \}$

(Chứng minh xem như bài tập)

 

 

Phần áp dụng

 

Bài toán 1:   Cho  $A=\left \{ x\in \mathbb{Q}:\,\,x>0\,,\,x^2<2 \right \}$.  Chứng minh rằng  $Sup\,A=\sqrt{2}$

 

Chứng minh

 

Ta có $\sqrt{2}$ là một chặn trên của $A$ nên  $Sup\,A \leq \sqrt{2}$.

 

Đặt  $d=\sqrt{2}-Sup\, A\geq 0$, nếu $d>0$ thì theo nguyên lý Archimedes, tồn tại số nguyên dương $n$ sao cho $nd>1$.

 

Đặt  $Sup \,A=x$ và  $m=[nx]+1$ ta có $nx+1>[nx]+1>nx$  hay  $nx+1>m>nx$

 

Suy ra   $x+\frac{1}{n}>\frac{m}{n}>x$  mà  $x+\frac{1}{n}<x+d=Sup\,A+d=\sqrt{2}$

 

Điều này dẫn đến  $\sqrt{2}>\frac{m}{n}>Sup\,A$   (mâu thuẫn)

 

Vậy  $\sqrt{2}-Sup\,A=d=0$   hay   $Sup\,A=\sqrt{2}$

 


Bài toán 2:   Tìm Supremum và Infimum của

 

a)   $A=\left \{ \frac{1}{2n}\,|\,n\in \mathbb{N}^* \right \}$

 

b)   $B=\left \{ \frac{n}{n+2}\,|\,n\in \mathbb{N}^* \right \}$

 

c)   $C=\left \{ 0.2\,,\,0.22\,,\,0.222\,,\,... \right \}$

 

Giải

 

a)   Ta có $\frac{1}{2n}\leq \frac{1}{2}\,\,,\,\,\forall n\geq 1$ nên $\frac{1}{2}$ là một chặn trên của $A$ và $\frac{1}{2}\in A$ nên theo định lý 1 thì $Sup\,A=\frac{1}{2}$

 

Ta thấy dãy $\left ( \frac{1}{2n} \right )_{n\in\mathbb{N}^*}$  là một dãy giảm và  $\lim_{n \to \infty }\frac{1}{2n}=0$  nên theo định lý 4 thì  $Inf \,A=\lim_{n \to \infty }\frac{1}{2n}=0$

 

b)   Ta thấy dãy $\left ( \frac{n}{n+2} \right )_{n\in\mathbb{N}^*}$  là một dãy tăng và  $\lim_{n \to \infty }\frac{n}{n+2}=1$  nên theo định lý 3 thì  $Sup \,B=\lim_{n \to \infty }\frac{n}{n+2}=1$

 

Với mọi $n\geq 2$ thì $\frac{n}{n+2}\geq \frac{1}{2}$ suy ra $\frac{1}{2}$ là một chặn dưới của $B$, mà $\frac{1}{2}\in B$ nên theo định lý 2 thì  $Inf\,B=\frac{1}{2}$

 

c)   Ta thấy  $C=\left \{ \frac{2}{10}\,,\,\frac{2}{10}\left ( 1+\frac{1}{10} \right )\,,\,\frac{2}{10}\left ( 1+\frac{1}{10}+\frac{1}{10^2} \right )\,,\,... \right \}=\left \{ \frac{2}{9}\left ( 1-\frac{1}{10^n}\right )\,|\,n\in \mathbb{N}^* \right \}$

 

Suy ra  $\frac{2}{10}\leq c<\frac{2}{9}$  với mọi $c\in C$, từ đây ta suy ra được  $Inf\,C=\frac{2}{10}$  và  $C$ bị chặn trên.

 

Đặt  $Sup\,C=s$ suy ra $s\leq \frac{2}{9}$ , ta có  $s-\frac{2}{9.10^n}\leq \frac{2}{9}\left ( 1-\frac{1}{10^n} \right )\leq s$   (**)

 

Cho  $n \to \infty$  thì từ (**) ta có  $s\leq \frac{2}{9}\leq s$.

 

Vậy  $Sup\,C=s=\frac{2}{9}$




#730282 $a_1>0, a_{n+1}=\frac{a^{3}_{n...

Đã gửi bởi phuc_90 on 10-09-2021 - 15:17 trong Dãy số - Giới hạn

Bài toán:   Cho $a\in \mathbb{R^+}$ và dãy số thực $(a_n)_n$ được định nghĩa như sau

 

$$a_1>0, a_{n+1}=\frac{a^{3}_{n}+3aa_n}{3a^2_{n}+a}, \forall n\geq 1$$

 

Hãy xác định tất cả các giá trị của $a_1$ để dãy trên hội tụ và tìm giới hạn của dãy .




#730490 $f(\frac{a^2+b^2}{a+b})\geq f(\frac...

Đã gửi bởi phuc_90 on 17-09-2021 - 16:14 trong Phương trình hàm

Bài toán:   Tìm tất cả hàm số $f:\mathbb{R^+}\rightarrow \mathbb{R^+}$ liên tục trên $\mathbb{R^+}$ sao cho

 

$$f\left ( \frac{a^2+b^2}{a+b} \right )\geq f\left ( \frac{a}{2} \right )+f\left ( \frac{b}{2} \right )\,\,, \forall a,b\in \mathbb{R^+}$$




#730159 Nhóm hữu hạn có cấp 45

Đã gửi bởi phuc_90 on 05-09-2021 - 17:38 trong Góc Tin học

Mô tả tất cả (sai khác một đẳng cấu) các nhóm hữu hạn có cấp 45




#730001 Chứng minh:$$\inf AB=\min\operatorname{xtremum...

Đã gửi bởi phuc_90 on 30-08-2021 - 09:10 trong Giải tích

Cho $A, B$ là các tập con khác rỗng, bị chặn của $\mathbb{R},$ và đặt $AB= \left \{ {\it ab}:{\it a}\in A, {\it b}\in B \right \}.$ Chứng minh:

$$\inf AB= \min\left \{ \inf A\inf B, \inf A\sup B, \sup A\inf B, \sup A\sup B \right \}$$




#729901 $\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt...

Đã gửi bởi phuc_90 on 24-08-2021 - 17:08 trong Bất đẳng thức - Cực trị

Cho $x,y\in \left [ 0,1 \right ]$. Chứng minh rằng:

 

$$\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{\left ( 1-x \right )^2+\left ( 1-y \right )^2}\geq \left ( 1+\sqrt{5} \right )\left ( 1-xy \right )$$




#729957 $\mathop{\lim}\limits_{n\to\infty}\left[{...

Đã gửi bởi phuc_90 on 28-08-2021 - 16:57 trong Giải tích

Ta có $\left \| \left ( n+\lambda  \right )x+y \right \|\leq \left \| nx+y \right \|+\left \| \lambda x\right \| ,\forall n$

 

hay $\left \| \left ( n+\lambda  \right )x+y \right \|- \left \| nx+y \right \|\leq \left \| \lambda x\right \| ,\forall n$

 

Suy ra $\lim_{n\rightarrow \infty }\left (\left \| \left ( n+\lambda  \right )x+y \right \|- \left \| nx+y \right \|  \right )\leq \left \| \lambda x\right \|$  (*)

 

Đẳng thức (*) chỉ xảy ra khi và chỉ khi $\left \| \left ( n+\lambda  \right )x+y \right \|- \left \| nx+y \right \|=\left \| \lambda x\right \| ,\forall n$

 

Từ đây ta tìm được $\lambda=0$




#730839 $G=\left \{ x,y\in G\,\,|\,\, x^...

Đã gửi bởi phuc_90 on 01-10-2021 - 16:58 trong Góc Tin học

Bài toán:  Cho nhóm $G$ được xác định như sau  $G=\left \{ x,y\in G\,\,|\,\, x^3=y^2=(xy)^2 =1\right \}$

 

Hãy liệt kê tất cả phần tử, tất cả nhóm con chuẩn tắc của nhóm G.




#730921 Cho $P(x)=Q(x)+Q(1-x)$ và $P(0)=0$. Tính $P(P(2013))...

Đã gửi bởi phuc_90 on 04-10-2021 - 16:48 trong Đa thức

Cho các đa thức $P(x),Q(x)$ với hệ số thực thoả mãn điều kiện $P(x)=Q(x)+Q(1-x),\forall x\in \mathbb R$. Biết $P(0)=0$ và các hệ số của $P(x)$ đều không âm. Tính $P(P(2013))$.

 

Từ giả thiết $P(x)=Q(x)+Q(1-x)$ , ta thay $x$ bởi $1-x$ khi đó $P(1-x)=Q(1-x)+Q(x)$

 

Suy ra  $P(x)=P(1-x)\,\,\,,\,\,\,\forall x\in \mathbb{R}$   (*)

 

Giả sử $P(x)=a_0+a_1x+...+a_nx^n$  với các hệ số là các số thực không âm.

 

Từ (*) cho $x=0$ ta có $a_0=P(0)=P(1)=a_0+a_1+...+a_n$  suy ra  $a_1+a_2+...+a_n=0 \Rightarrow a_1=0,\,\,a_2=0,\,\,...,\,\,a_n=0$

 

Suy ra  $P(x)=a_0$  mà ta lại có $P(0)=0$  nên  $a_0=0$. Vậy $P(x)=0$

 

Điều này dẫn tới $P(P(2013))=0$




#731145 $\sum_{\sigma \in S_n}sgn(\sigma )\,...

Đã gửi bởi phuc_90 on 14-10-2021 - 17:44 trong Đại số tuyến tính, Hình học giải tích

Bài toán:   Cho $A$ là ma trận vuông cấp $n$ và $\tau \in S_n$

 

Chứng minh rằng         $$\sum_{\sigma \in S_n} sgn(\sigma )\,\,a_{1\sigma (1)}\,\,a_{2\sigma (2)}...\,a_{n\sigma (n)} = \sum_{\sigma \in S_n}sgn(\sigma )\,\,a_{\tau (1)\sigma \tau (1)}\,\,a_{\tau (2)\sigma \tau (2)}...\,a_{\tau (n)\sigma \tau (n)}$$

 

Trong đó, $\tau \sigma = \tau\circ \sigma$




#730838 chứng minh ma trận vuông $A$ giao hoán với mọi ma trận vuông cùng c...

Đã gửi bởi phuc_90 on 01-10-2021 - 16:36 trong Đại số tuyến tính, Hình học giải tích

Hai ma trận vuông $A$ và $B$ được gọi là giao hoán nhau nếu $AB= BA.$ Chứng minh rằng ma trận vuông $A$ giao hoán với mọi ma trận vuông cùng cấp với nó khi và chỉ khi $A$ có dạng đường chéo $k\cdot l$ với số thực $k,$ và ma trận đơn vị $I.$

 

-  Nếu $A=kI_n$ thì $AB=kI_nB=kB=BkI_n=BA$

 

-  Giả sử $A$ giao hoán với mọi ma trận vuông có cùng cấp với nó

 

Ta lấy $B$ là ma trận đường chéo, có các phần tử khác nhau, thì theo bài https://diendantoanh...t-ma-trận-chéo/  suy ra $A$ là ma trận đường chéo

 

Bây giờ ta cho các phần tử trên đường chéo chính của $A$ bằng nhau thì $A$ sẽ có dạng $kI_n$




#731298 Nếu $|A|=k \ne 0$, hãy tính $|2A-3I|$ theo $k...

Đã gửi bởi phuc_90 on 24-10-2021 - 21:36 trong Đại số tuyến tính, Hình học giải tích

Cho A là ma trận vuông cấp 3 thỏa mãn  $A^2-3A+2I=0$

a, Chứng minh: $A$ khả nghịch

b, Tìm $A^{-1}$ theo $A$ và $I$

c, Nếu $|A|=k \ne 0$, hãy tính $|2A-3I|$ theo $k$

 

Ta có  $A^2-3A+2I_n=0 \,\,\,\Rightarrow \,\,\,A\left ( \frac{3}{2}I_n-\frac{1}{2}A \right )=\left ( \frac{3}{2}I_n-\frac{1}{2}A \right )A=I_n$

 

nên $A$  khả nghịch và  $A^{-1}=\left ( \frac{3}{2}I_n-\frac{1}{2}A \right )$

 

Đặt $|2A-3I_n|=a\in \mathbb{R}$ , ta lại có $(2A-3I_n)(2A-3I_n)=I_n$

 

$\Rightarrow$     $a^2=|2A-3I_n||2A-3I_n|=|(2A-3I_n)(2A-3I_n)|=|I_n|=1$

 

Vậy  $|2A-3I_n|=1$  nếu $a>0$  hoặc  $|2A-3I_n|=-1$  nếu  $a<0$




#731010 Chứng minh rằng $F(x)={{[P(x)]}^{2}}+1...

Đã gửi bởi phuc_90 on 06-10-2021 - 22:27 trong Đa thức

 

Đa thức $P(x)$ với hệ số nguyên thỏa mãn $\left\{\begin{matrix} P(2006)=2006! \\ xP(x-1)=(x-2006)P(x),\forall x\in \mathbb{R}. \end{matrix}\right.$
 
Chứng minh rằng $F(x)={{[P(x)]}^{2}}+1$ bất khả quy trên $\mathbb{Z}$. 

 

 

Bổ đề 1:   Nếu $H(x)$ là đa thức hệ số nguyên với   $deg H < \infty$   thỏa $\left\{\begin{matrix}H(a_0)=1\,\,,\,\,a_0\in \mathbb{Z}\\H(x)=H(x-1)\,\,,\,\,\forall x\in \mathbb{R} \end{matrix}\right.$       thì      $H(x)=1$

 

Thật vậy, từ điều kiện $\left\{\begin{matrix}H(a_0)=1\,\,,\,\,a_0\in \mathbb{Z}\\H(x)=H(x-1)\,\,,\,\,\forall x\in \mathbb{R} \end{matrix}\right.$

 

Ta suy ra được $H(n)=1\,\,,\,\,\forall n\in \mathbb{Z}$ , khi đó đa thức $H(x)-1$ sẽ có vô số nghiệm trên tập các số nguyên nên      $H(x)-1\equiv 0$

 

Suy ra $H(x)=1$

 

Bổ đề 2:   Đa thức $P(x)=(x-a_1)^2(x-a_2)^2...(x-a_n)^2+1$ là bất khả quy trên $\mathbb{Z}[x]$ với $a_1,a_2,..,a_n$ là các số nguyên

 

Giả sử    $P(x)=Q(x)R(x)$ với $Q(x),R(x)$   là các đa thức hệ số nguyên và    $1\leq deg Q\,\,,\,\,deg R\leq n-1$

 

Ta có    $Q(a_i)R(a_i)=P(a_i)=1\,\,,\,\,i=\overline{1,n}$

 

Suy ra     $Q(a_i)=R(a_i)=1$ hoặc $Q(a_i)=R(a_i)=-1$  với mọi $1\leq i\leq n$

 

Khi đó đa thức    $Q(x)-R(x)$ có $deg(Q-R)\leq n-1$    nhưng có tới $n$ nghiệm là     $a_1,a_2,..,a_n$

 

Do đó    $Q(x)-R(x)\equiv 0$ hay $Q(x)=R(x)$

 

Khi đó ta có    $Q^2(x)=P(x)=(x-a_1)^2(x-a_2)^2...(x-a_n)^2+1$

 

suy ra   $\left ( Q(x)-(x-a_1)...(x-a_n) \right )\left ( Q(x)+(x-a_1)...(x-a_n) \right )=1$ (điều này không thể xảy ra)

 

Vậy $P(x)$ là đa thức bất khả quy trên  $\mathbb{Z}[x]$

 

Trở lại bài toán

 

Ta có $\left\{\begin{matrix}0.P(-1)=-2006.P(0)\\ 1.P(0)=-2005.P(1)\\ ....................\\ 2006.P(2005)=0.P(2006)\end{matrix}\right.$     suy ra    $P(0)=P(1)=...=P(2005)=0$

 

Khi đó ta có thể viết   $P(x)$   dưới dạng    $P(x)=x(x-1)...(x-2005)H(x)$   với   $H(x)$   là đa thức có hệ số nguyên và    $deg H < deg P$

 

Từ điều kiện    $xP(x-1)=(x-2006)P(x)\,\,,\,\,\forall x\in \mathbb{R}$

 

Ta suy ra được   $x(x-1)...(x-2006)H(x-1)=x(x-1)...(x-2006)H(x)\,\,,\,\,\forall x\in \mathbb{R}$

 

Điều này chỉ xảy ra khi     $H(x)=H(x-1)\,\,,\,\,\forall x\in \mathbb{R}$

 

Mặt khác, ta có    $2006!=P(2006)=2006! H(2006)$   suy ra   $H(2006)=1$

 

Khi đó áp dụng các bổ đề trên ta có    $P^2(x)+1$    bất khả quy trên    $\mathbb{Z}[x]$




#730646 $\lim_{n \to \infty }a_n=a\,\,,\...

Đã gửi bởi phuc_90 on 23-09-2021 - 08:59 trong Dãy số - Giới hạn

Bài toán:   Cho dãy số thực dương $(a_n)_n$ và $a,b>0$ thỏa mãn $\lim_{n \to \infty }a_n=a$ và $\lim_{n \to \infty }\sqrt{a_n}=b$

 

Chứng minh rằng:            $a=b^2$




#730000 Chứng minh các tập đóng trong $\mathbb{R}^{2}...

Đã gửi bởi phuc_90 on 30-08-2021 - 08:58 trong Tôpô

Ta sẽ sử dụng mệnh đề sau :  A là một tập đóng trong $\mathbb{R^2}$ nếu và chỉ nếu mọi dãy trong A, nếu hội tụ trong $\mathbb{R^2}$ thì giới hạn của nó thuộc A.

 

a)   Với dãy $\left \{ \left ( x_n,y_n \right ) \right \}$ trong A hội tụ về $\left ( x,y \right )$ trong $\mathbb{R^2}$. Ta có $\left ( x_n,y_n \right )\in A$ nên $x_ny_n=1$ hay $x_n=\frac{1}{y_n}$.

 

Do một dãy số chỉ có duy nhất một giới hạn nên $x=\lim_{n\rightarrow \infty }x_n=\lim_{n\rightarrow \infty }\frac{1}{y_n}=\frac{1}{y}$, điều này dẫn đến $xy=1$ hay $\left ( x,y \right )\in A$.

 

Vậy  $A=\left \{ \left ( x,y \right )\in\mathbb{R^2}\mid xy=1 \right \}$ là tập đóng

 

Câu b), c) lập luận tương tự




#730280 $u_{n+1}=\frac{u_{n}^{4}}{u_{n}^{4}-8u_{n}^2+8}$

Đã gửi bởi phuc_90 on 10-09-2021 - 15:03 trong Dãy số - Giới hạn

Cho dãy $\left\{\begin{matrix} u_{1}=2 & \\ u_{n+1}=\frac{u_{n}^{4}}{u_{n}^{4}-8u_{n}^2+8} & \end{matrix}\right.$

Tính $\lim_{n\rightarrow \infty }\frac{u_{n}}{n}$

 

 

Ta có $u_1=2, u_2=-2, u_3=-2$, bằng qui nạp ta chứng minh được $u_n=-2, \forall n\geq 2$

 

Suy ra $\lim_{n \to \infty } \frac{u_n}{n}=\left (\lim_{n \to \infty }\frac{1}{n}  \right )\left ( \lim_{n \to \infty }u_n \right )=0.\left ( -2 \right )=0$




#730279 Chứng minh:$${\rm span}\left\langle {...

Đã gửi bởi phuc_90 on 10-09-2021 - 14:48 trong Đại số tuyến tính, Hình học giải tích

Cho $V$ là $1$ không gian vector, và $S$ là $1$ họ vectors thuộc $V.$  Gọi số tối đa các vectors độc lập tuyến tính có thể rút ra từ $S$ là $r.$ Giả sử ${S}'$ gồm $r$ vectors độc lập tuyến tính rút ra từ $S.$ Chứng minh $\operatorname{span}\left \langle {S}' \right \rangle= \operatorname{span}\left \langle S \right \rangle.$ Lưu ý kí hiệu $\operatorname{span}\left \langle A \right \rangle$ là chỉ bao tuyến tính của họ vectors $A.$

 

Giả sử $S'=\left \{ s_i\in S: i=\overline{1,r} \right \}$, ta có $S'\subset S$ suy ra $spanS' \subset spanS$

 

Với $a_1s_1+a_2s_2+...+a_rs_r+as=0$ (*) trong đó $s\in S\setminus S'$  và $a,a_1,a_2,...,a_r\in \mathbb{K}$

 

Nếu $a=0$ thì từ (*) suy ra $a_1s_1+a_2s_2+...+a_rs_r=0$ suy ra $a_1=a_2=...=a_r=0$

 

Do đó $s_1,s_2,...,s_r,s$ là các vector độc lập tuyến tính (mâu thuẫn với giả thiết chỉ có tối đa $r$ các vector độc lập tuyến tính)

 

Vậy $a\neq 0$ và (*) được viết lại thành $s=-\frac{a_1}{a}s_1-\frac{a_2}{a}s_2-...-\frac{a_r}{a}s_r$  suy ra $s\in spanS'$

 

Từ đó suy ra được $spanS \subset spanS'$

 

Vậy $spanS'=spanS$




#729887 $\sqrt{\frac{a+abc}{b+c}}+\...

Đã gửi bởi phuc_90 on 23-08-2021 - 15:57 trong Bất đẳng thức - Cực trị

Cho a,b,c là các số thực không âm thỏa $a+b+c=2$. Chứng minh rằng:

 

$$\sqrt{\frac{a+abc}{b+c}}+\sqrt{\frac{b+abc}{c+a}}+\sqrt{\frac{c+abc}{a+b}}\geq 2$$




#730585 $\left\{\begin{matrix} x_{1}=1...

Đã gửi bởi phuc_90 on 21-09-2021 - 12:44 trong Dãy số - Giới hạn

Cho dãy $\{x_{n} \}_{n \ge 1}$ được xác định bởi $\left\{\begin{matrix} x_{1}=1\\ x_{n}=n.x_{n-1}+1 \end{matrix}\right.$
Hãy tìm số n lớn nhất mà <1000 sao cho $x_{n}$ tận cùng là 2 chữ số 0.

 

Theo giả thiết ta có

                               $x_n=nx_{n-1}+1$

                                     $=n\left ( (n-1)x_{n-2}+1 \right )+1$

                                     $=n(n-1)x_{n-2}+n+1$

                                      ...............

                                     $=n(n-1)...2\,+\,n(n-1)...3\,\,+\,\,n(n-1)...4\,\,+\,\,...\,\,+\,\,n(n-1)\,\,+\,\,n+1$

 

Với $n=4k+3, k\in \mathbb{N^*}$ ta có $\left\{\begin{matrix}1+n=4k+4\equiv 0 \,\,\,(mod \,\, 4)\\ n(n-1)=4(4k^2+5k+1)+2\equiv 2 \,\,\,(mod \,\,4)\\ n(n-1)(n-2)\equiv 2(n-2)=2(4k+1)\equiv 2 \,\,\,(mod \,\,4)\end{matrix}\right.$

 

suy ra  $1+n+n(n-1)+n(n-1)(n-2)\equiv 0 \,\,\,(mod \,\,4)$

 

Mặt khác, $\forall n\geq 4$ ta có $4\,\,|\,\, n(n-1)(n-2)(n-3)$

 

Từ những điều trên ta suy ra được $u_n\equiv 0 \,\,\,(mod \,\, 4)$ khi $n=4k+3, \,\,k\in \mathbb{N^*}$    (1)

 

Bây giờ ta sẽ tìm $n$ sao cho $u_n\equiv 0\,\,\, (mod \,\, 25)$ bằng phương pháp liệt kê (ai có cách nào gọn hơn thì post lên để hoàn thiện cho bài này nhé)

 

-   Với $n=5k \,\,,\,\, k\geq 2$ thì $n(n-1)(n-2)(n-3)(n-4)(n-5)\equiv 0\,\,\,(mod\,\, 25)$

 

Khi đó để $u_n\equiv 0\,\,\, (mod \,\, 25)$ thì ta sẽ tìm $n$ với điều kiện như trên sao cho

$$A=1+n+n(n-1)+n(n-1)(n-2)+n(n-1)...(n-3)+n(n-1)...(n-4)\equiv 0\,\,\, (mod\,\, 25)$$

 

Nhưng điều này không xảy ra vì  $\left\{\begin{matrix}1+n\equiv 5k+1\,\,(mod\,\,25)\\ n(n-1)\equiv -5k\,\,(mod\,\,25)\\ n(n-1)(n-2)\equiv -5k(n-2)\equiv 10k\,\,(mod\,\,25)\\ n(n-1)...(n-3)\equiv 10k(n-3)\equiv -5k\,\,(mod\,\,25)\\ n(n-1)...(n-4)\equiv -5k(n-4)\equiv -5k\,\,(mod\,\,25)\end{matrix}\right.$  suy ra $A\equiv 1 \,\,\, (mod \,\, 25)$

 

Bằng lập luận tương tự như vậy với $n=5k+1\,\,,\,\, n=5k+2\,\,,\,\, n=5k+3\,\,,\,\, n=5k+4$

 

thì ta tìm được $n=25l+7\,\,,\,\, l\geq 1$  thỏa $u_n\equiv 0\,\,\, (mod \,\, 25)$    (2)

 

Từ (1) và (2) ta suy ra được $n=100s+7\,\,\,,\,\, s\geq 1$ thì $u_n\equiv 0 \,\,\,(mod\,\, 100)$

 

Vậy $n=907$ thỏa mãn đề bài




#730221 $|a_{m}-a_{n}| \geq \frac{1}...

Đã gửi bởi phuc_90 on 07-09-2021 - 18:37 trong Dãy số - Giới hạn

Chứng minh rằng tồn tại dãy số $(a_{n})$ thỏa mãn:
$i) \exists c_{1},c_{2} \in \mathbb{R}: c_{1} \leq a_{n} \leq c_{2} \forall n \in \mathbb{N}^{*};$
$ii) \forall m,n \in \mathbb{N}^{*},m \neq n, |a_{m}-a_{n}| \geq \frac{1}{m-n}.$

 

Với mọi số thực $t\geq 2$ ta có $t+\frac{1}{t}-\frac{5}{2}=\frac{(t-2)(2t-1)}{2t}\geq 0$ nên $t+\frac{1}{t}\geq \frac{5}{2}$  (*)

 

Bổ đề :  Với $\frac{m}{n}\geq 2$ hoặc $m<n$ thì $\left | \frac{2}{m}-\frac{2}{n} \right |\geq \frac{1}{m-n}$

 

Thật vậy, với $\frac{m}{n}\geq 2$ ta có $(m-n)\left | \frac{2}{m}-\frac{2}{n} \right |=2(m-n)\frac{|n-m|}{mn}=2(m-n)\frac{-(n-m)}{mn}=2\left ( \frac{m}{n}+\frac{n}{m}-2 \right )$

 

Theo BĐT (*) ta có $\frac{m}{n}+\frac{n}{m}\geq \frac{5}{2}$ suy ra $(m-n)\left | \frac{2}{m}-\frac{2}{n} \right |\geq 1$

 

hay $\left | \frac{2}{m}-\frac{2}{n} \right |\geq \frac{1}{m-n}$

 

Còn trường hợp $m<n$ thì $\left | \frac{2}{m}-\frac{2}{n} \right |> 0> \frac{1}{m-n}$

 

Vậy bổ đề được chứng minh hoàn toàn

 

Bây giờ, với mọi số nguyên dương $n$ ta có $0<\frac{2}{n}\leq 2$

 

Đặt $a_n=\frac{2}{n}$ thì $(a_n)_{n\in \mathbb{N^*}}$ là dãy bị chặn và đặt $n_k=2k, \forall k\in \mathbb{N^*}$

 

Theo bổ đề trên thì dãy con $(a_{n_k})_{k\in \mathbb{N^*}}$ của $(a_n)_{n\in \mathbb{N^*}}$ chính là dãy cần tìm.

 

Note: $n_{k_i} > n_{k_j}$ thì $\frac{n_{k_i}}{n_{k_j}}\geq 2$




#730591 Tìm tổng 1975 số đầu của dãy số?

Đã gửi bởi phuc_90 on 21-09-2021 - 20:19 trong Dãy số - Giới hạn

Cho dãy $(u_{n}):u_{n+2}=u_{n+1}+u_{n}$.
$S_{2012}=2013;S_{2013}=2012$,với $S_{n}=\sum_{k=1}^{n}u_{k}$.
Tìm $S_{1975}$.

 

Cho dãy $(a_n)_n$ được xác định như sau

 

$$a_0=1\,\,,\,\,a_1=1\,\,,\,\,a_{n+2}=a_{n+1}+a_n\,\,\,,\,\,\forall n\in \mathbb{N}$$

 

Khi đó bằng qui nạp ta chứng minh được $\left\{\begin{matrix}a_{n+1}^{2}-a_na_{n+2}=(-1)^{n+1}\,\,,\,\,\forall n\geq 1\\ a_1+a_2+...+a_n=a_{n+2}-2\,\,\,,\,\,\forall n\geq 1\end{matrix}\right.$

 

Mặt khác, ta thấy $u_3=u_2+u_1=a_1u_2+a_0u_1$

 

Giả sử $u_{n+2}=a_nu_2+a_{n-1}u_1\,\,\,,\,\, \forall n\leq k$

 

Khi đó

$u_{k+3}=u_{k+2}+u_{k+1}$

         $=a_ku_2+a_{k-1}u_1+a_{k-1}u_2+a_{k-2}u_1$

         $=(a_k+a_{k-1})u_2+(a_{k-1}+a_{k-2})u_1$

         $=a_{k+1}u_2+a_ku_1$

 

Theo nguyên lý qui nạp ta đã chứng minh được $u_{n+2}=a_nu_2+a_{n-1}u_1\,\,\,,\,\, \forall n\geq 1$

 

Khi đó ta tính được

$$S_{n+2}=(1+a_1+a_2+...+a_n)u_2+(1+a_0+a_1+a_2+...+a_{n-1})u_1=(a_{n+2}-1)u_2+a_{n+1}u_1\,\,\,\,\,(*)$$

 

Với $\left\{\begin{matrix}S_{2012}=2013\\S_{2013}=2012 \end{matrix}\right. $   $\Rightarrow$    $\left\{\begin{matrix}(a_{2012}-1)u_2+a_{2011}u_1=2013\\ (a_{2013}-1)u_2+a_{2012}u_1=2012\end{matrix}\right.$

 

Ta tìm được  $\left\{\begin{matrix}u_1=\frac{1-a_{2012}-2013a_{2011}}{1-a_{2010}}\\ u_2=\frac{2013a_{2012}-2012a_{2011}}{1-a_{2010}}\end{matrix}\right.$

 

Thế vào (*) ta được $S_{n+2}=\frac{(a_{n+2}-1)(2013a_{2012}-2012a_{2011})+a_{n+1}(1-a_{2012}-2013a_{2011})}{1-a_{2010}}$

 

Vậy $S_{1975}=\frac{(a_{1975}-1)(2013a_{2012}-2012a_{2011})+a_{1974}(1-a_{2012}-2013a_{2011})}{1-a_{2010}}$




#730836 Chứng minh rằng mọi ma trận giao hoán với $A$ cũng là một ma trận c...

Đã gửi bởi phuc_90 on 01-10-2021 - 16:14 trong Đại số tuyến tính, Hình học giải tích



Cho $A$ là một ma trận vuông có các phần tử nằm ngoài đường chéo chính bằng $0,$ gọi là ma trận chéo; với các phần tử trên đường chéo chính khác nhau từng đôi một. Chứng minh rằng mọi ma trận giao hoán với $A$ cũng là một ma trận chéo.

 

Giả sử $A,B$ là ma trận vuông cấp n

 

Do $AB=BA$ nên với mọi $1\leq i\neq j\leq n$ ta có $[AB]_{ij}=[BA]_{ij}$

 

$ \Rightarrow \sum_{i=1}^{n}[A]_{ik}[B]_{kj}=\sum_{i=1}^{n}[B]_{ik}[A]_{kj}\,\,\,\Rightarrow \,\,\, [A]_{ii}[B]_{ij}=[B]_{ij}[A]_{jj}$

 

do $[A]_{ii}\neq [A]_{jj}$  nên $[B]_{ij}=0$

 

Vậy $B$ là ma trận đường chéo.